Venca's page
english version     česká verze

Personal informations:

Václav Mácha
macha@math.cas.cz

Current Occupation:

2019 - nowadays: Researcher at Mathematical Institute of the Czech Academy of Sciences

Previous Occupations:

2017-2018: Postdoc position at Mathematical Institute of the Czech Academy of Sciences
2016: Postdoc position at CMAC, Yonsei University, Seoul, Republic of Korea
2013-2015: Postdoc position at Mathematical Institute of the Czech Academy of Sciences

Academic Stays:

2022: Institute of Mathematics, Polish Academy of Science, Warszaw, Poland (2 weeks)
2021: Institute of Mathematics, Polish Academy of Science, Warszaw, Poland (2 weeks)
2020: Ulm University, Ulm, Germany, (1 month)
2019: Institute of Mathematics, Polish Academy of Science, Warszaw, Poland (2 weeks)
2018: Tokyo Institute of Technology, Japan (1 week)
2018: Imperial College London, United Kingdom (1 week)
2017: Imperial College London, United Kingdom (1 week)
2017: Tokyo Institute of Technology, Japan (1 week)
2016: Tokyo Institute of Technology, Japan (1 week)
2015: University of Pittsburgh, USA (2 month)

Awards:

2018: Award of Czech Mathematical society

Teaching Activities:

2020-nowadays: Math, University of Chemistry and Technology, Prague
2021, 2022: Applied differential equations I, spring semester, North Carolina State University in Prague
2021: PDEs of Mathematical Physics, African Institute of Mathematical Sciences, Limbe, Cameroon
2017-2020: Math, The Masaryk Institute of Advanced Studies, Czech Technical University in Prague
2013-2015: Math, practicals, Faculty of Information Technology, Czech Technical University in Prague
2011-2012: Math, practicals, Faculty of Mathematics and Physics, Charles University in Prague
2011-2012: Math, practicals, Technical University of Liberec
2009-2011: Math, practicals, Faculty of Social Sciences, Charles University in Prague
2008-2009: Math, High School Educanet, Kladno
2007-2009: Mathematical Analysis, practicals, Faculty of Mathematics and Physics, Charles University in Prague

Education:

2008 - 2012: PhD student, Faculty of Mathematics and Physics, Charles University in Prague, research theme: Qualitative Properties of Solution to Some Types of Equations Describing Flow of Fluids
2006 - 2008: graduate student, Faculty of Mathematics and Physics, Charles University in Prague, specialization: Mathematical Analysis, diploma thesis: Use of Fredholms theorems to proof of existence of solution to Stokes-type equation
2003 - 2006: undergraduate student, Faculty of Mathematics and Physics, Charles University in Prague

Others:

Organiser of the EVEQ NextGen 2024 summer school.

Publication list:

[32] Galdi, G. P., Nečasová Š., M. V., She, B.: On the Motion of a Pendulum with a Cavity Filled with a Compressible Fluid, submitted to Journal of Mathematical Physics arXiv:2210.16950
[31] M. V., Muha, B., Nečasová Š., Roy, A., Trifunovic, S.: Existence of a weak solution to a nonlinear fluid-structure interaction problem with heat exchange, Communications in Partial Differential Equations 47(8), 1591–1635, 2022
[30] Ludvík, P., M. V.: Stochastic forcing in hydrodynamic models with non-local interactions, Journal of Theoretical Probability https://doi.org/10.1007/s10959-021-01137-x
[29] Kalousek, M., M. V., Nečasová Š.: Local-in-time existence of strong solutions to a class of the compressible non-Newtonian Navier-Stokes equations, Mathematische Annalen https://doi.org/10.1007/s00208-021-02301-8

[28] M. V.: Compressible fluid inside a linear oscillator, Journal of Elliptic and Parabolic equations, Journal of Elliptic and Parabolic Equations (2021) 7:393–416
[27] M. V., Wiedemann, E.: A Note on Measure-Valued Solution to the Full Euler System, accepted to Applications of Mathematics, arXiv:2009.14255
[26] Klingenberg, C., Kreml, O., M. V., Markfelder, S.: Shocks make the Riemann problem for the full Euler system in multiple space dimensions ill-posed, Nonlinearity 33 (2020), no. 12, 6517-6540
[25] Březina, J., Kreml, O., M. V.: Non-uniqueness of delta shocks and contact discontinuities in the multi-dimensional model of Chaplygin gas, Nonlinear Differential Equations and Applications 28 (2021), no. 2, Paper No. 13

[24] Kreml, O., M. V., Nečasová Š., Wroblewska-Kaminska, A.: Low stratification of a heat-conducting fluid in a time dependent domain, Electronic Journal of Differential Equations (2021)
[23] Feireisl, E., M. V.: On the motion of rigid bodies in a perfect fluid, Nonlinear Differential Equations and Applications 28 (2021), no. 4, Paper No. 35, 16 pp.
[22] Březina, J., M. V.: Low stratification of the complete Euler system, Journal of Evolution Equations 21 (2021), no. 1, 735-761
[21] Galdi, G. P., M. V., Nečasová Š.: On weak solutions to the problem of a rigid body with a cavity filled with a compressible fluid, and their asymptotic behavior, International Journal of Non-Linear Mechanics, Volume 121, 103431

[20] Chiodaroli, E., Kreml, O., M. V., Schwarzacher, S.: Non-uniqueness of admissible weak solutions to the compressible Euler equations with smooth initial data, Transactions of the AMS 374 (2021), no. 4, 2269-2295
[19] Al Baba, H., Klingenberg, M., Kreml, O., M. V., Markfelder, S.: On the uniqueness of solutions to the Euler-Fourier system emanating from the Riemann initial Data, SIAM Journal on Mathematical Analysis 52 (2020), no. 2, 1729-1760
[18] M. V., Schwarzacher, S.: BMO estimates for generalized Stokes problem with perfect slip boundary condition, Revista Matemática Iberoamericana 37 (2021), no. 3, 1115-1173
[17] Březina, J., M. V.: Inviscid limit for the compressible Euler system with nonlocal interactions, Journal of Differential Equations, Vol. 267 (2019), no. 7, 4410-4428

[16] Galdi, P. G., M. V., Nečasová Š..: On the motion of a body with a cavity filled with compressible fluid, Arch. Ration. Mech. Anal. 232 (2019), no. 3, 1649-1683
[15] Kreml, O., M. V., Nečasová Š., Wróblewska-Kamińska, A.: Flow of heat conducting fluid in a time dependent domain, Zeitschrift für Angewandte Mathematikund Physik, 69 (2018), no.5
[14] Hošek, R., M. V.: Weak-strong uniqueness for Navier-Stokes/Allen-Cahn system, Czechoslovak Mathematical Journal, vol. 69, no. 3, (2019)
[13] Bulíček, M., Kalousek, M., Kaplický, P., M. V.: Gradient $L^q$ theory for a class of nondiagonal elliptic systems, Nonlinear Analysis 171 (2018), 156--169

[12] Feireisl, E., M. V., Nečasová Š., Tucsnak, M.: Analysis of the adiabatic piston problem via methods of continuum mechanics, Annales de l'Institut Henri Poincare / Analyse non-lineaire 35 (2018), no. 5, 1377-1408
[11] M. V., Tichý J.: Hölder continuity of velocity gradients for shear-thinning fluids under perfect slip boundary conditions, J. Nonlinear Differential Equations and Applications (2017) 24:24
[10] Kreml, O., M. V., Nečasová Š., Wróblevska-Kamińska, A.: Weak solutions to the full Navier-Stokes-Fourier system with slip boundary conditions in time dependent domains, J. Math. Pures Appl. (9) 109 (2018), 67-92
[9] Březina J., Kreml O., M. V.: Dimension reduction for the full Navier-Stokes-Fourier system, J. Math. Fluid MEch. 19 (2017), no. 4, 659-683

[8] Feireisl E., Kreml O., M. V., Nečasová Š.: On the low Mach number limit of compressible flows in exterior domain, J. Evol. Equ 16 (2016), no. 3, 705-722
[7] M. V.: A short note on L^q theory for Stokes problem with a pressure dependent viscosity, Czechoslovak mathematical journal, 66 (141) (2016), 317-329
[6] M. V., Nečasová Š: Self-propelled Motion in a viscous Compressible Fluid - unbounded domains, Mathematical Models and Methods in Applied Sciences, Vol. 26, No. 4 (2016) 627-643
[5] M. V., Nečasová Š.: Self-propelled Motion in a viscous Compressible Fluid, Proc. Roy. Soc. Edinburgh Sect. A 146 (2016), no. 2, 415-433

[4] M. V., Tichý J.: Higher Integrability of Solutions to Generalized Stokes System Under Perfect Slip Boundary Conditions, J. Math. Fluid Mech., 16 (2014), 823-845
[3] M. V.: Partial Regularity of Solution to Generalized Navier-Stokes Problem, Cent. Eur. J. Math, 12(10), 2014, 1460-1483
[2] M. V.: On a Generalized Stokes Problem, Cent. Eur. J. Math., 9(4), 2011, 874-887
[1] M. V.: Regularity of Solution to Generalized Stokes Problem, WDS 2009, MATFYZPRESS 2009, 80-83