1. Let $u=(2,1,0)$ and $v=(-1,1,1)$. Decide, whether

$$
u+2 v \in \operatorname{span}\{(1,1,1),(-1,2,1)\}
$$

and justify your claim.
Points:
2. Compute a matrix X given as

$$
X=\left(\begin{array}{cc}
1 & 2 \\
-1 & 1
\end{array}\right)+\binom{1}{-2}\left(\begin{array}{ll}
2 & 2
\end{array}\right)
$$

Points:
3. Find the characteristic polynomial of

$$
\left(\begin{array}{lll}
2 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 2
\end{array}\right)
$$

and verify that $\lambda_{1}=0, \lambda_{2}=2$ and $\lambda_{3}=3$ are the eigenvalues of the matrix. Then find the eigenvector which corresponds to $\lambda_{2}=2$.

Points:
4. Find all solutions to

$$
\begin{aligned}
2 x-3 y+z & =5 \\
x+y+z & =0 \\
x+2 y-3 z & =-1 .
\end{aligned}
$$

Points:

5. Compute the determinant of

$$
\left(\begin{array}{cccc}
1 & 0 & -2 & 1 \\
0 & 2 & 1 & 1 \\
-2 & 1 & 1 & 0 \\
3 & 1 & 1 & 1
\end{array}\right)
$$

