Points: /25

Points:

/4

1. Do the vectors (1, -1, 1), (-1, 1, 1) and (1, 1, -1) form a basis in \mathbb{R}^3 ? Justify your claim.

2. Compute a matrix X given as

$$X = \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix}^{-1} \begin{pmatrix} 1 & -1 \\ 2 & 0 \end{pmatrix}.$$

Points: /5

3. Find the characteristic polynomial of

 $\begin{pmatrix} 3 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 3 \end{pmatrix}$

and verify that $\lambda_1 = 1$, $\lambda_2 = 3$ and $\lambda_3 = 4$ are the eigenvalues of the matrix. Then find the eigenvector which corresponds to $\lambda_1 = 1$.

Points: /6

4. Find all solutions to

2x - 3y + z = 5x + y + z = 0x + 2y - 3z = -1.

Points: /5

5. Find the symmetric matrix A corresponding to the quadratic form

$$Q(x, y, z) = 2x^{2} + 2y^{2} + z^{2} + xy + 2yz + 2xz^{2}$$

and decide about its definiteness. Justify your claim.

Points: /5