1. Do the vectors $(1,-1,1),(-1,1,1)$ and $(1,1,-1)$ form a basis in \mathbb{R}^{3} ? Justify your claim.

Points:
/4
2. Compute a matrix X given as

$$
X=\left(\begin{array}{ll}
2 & 3 \\
1 & 2
\end{array}\right)^{-1}\left(\begin{array}{cc}
1 & -1 \\
2 & 0
\end{array}\right)
$$

Points:
3. Find the characteristic polynomial of

$$
\left(\begin{array}{lll}
3 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 3
\end{array}\right)
$$

and verify that $\lambda_{1}=1, \lambda_{2}=3$ and $\lambda_{3}=4$ are the eigenvalues of the matrix. Then find the eigenvector which corresponds to $\lambda_{1}=1$.

Points: $\quad / 6$
4. Find all solutions to

$$
\begin{aligned}
2 x-3 y+z & =5 \\
x+y+z & =0 \\
x+2 y-3 z & =-1 .
\end{aligned}
$$

Points:

5. Find the symmetric matrix A corresponding to the quadratic form

$$
Q(x, y, z)=2 x^{2}+2 y^{2}+z^{2}+x y+2 y z+2 x z^{2}
$$

and decide about its definiteness. Justify your claim.

