1. Prove, that

$$
1+3+3^{2}+\ldots+3^{n}=\frac{3^{n+1}-1}{2}
$$

holds for all $n \in \mathbb{N}$.

Points:

2. Let

$$
A=\left(\begin{array}{ccc}
0 & 3 & -1 \\
1 & 0 & 2
\end{array}\right), \quad B=\left(\begin{array}{ccc}
0 & 2 & 1 \\
1 & 2 & 2
\end{array}\right)
$$

Compute, if possible
(a) $A+B$
(b) $A B$
(c) $B A^{T}$

Points:

3. Is $C=\left(\begin{array}{ccc}2 & 2 & 3 \\ 1 & -1 & 0 \\ -1 & 2 & 1\end{array}\right)$ a regular matrix? If yes, compute C^{-1}.

Points:

/6
4. Find all eigenvalues of $D=\left(\begin{array}{ccc}4 & 0 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & 1\end{array}\right)$.
Points: /6
5. Do the vectors $v_{1}=(1,0,1), v_{2}=(-1,1,0), v_{3}=(0,3,1)$ form a basis of \mathbb{R}^{3} ? If yes, find coordinates of $v=(0,0,4)$ with respect to this basis.

