Points:	/25
---------	-----

1. Write the third-degree Taylor polynomial at $x_0 = 0$ of

 $f(x) = (1+x)e^x.$

2. Find the maximal domain of

 $f(x,y) = \frac{x^2 + y}{1 - \sqrt{x^2 + y}}$

and make its sketch.

3. Sketch the set

$$M = \{(x, y) \in \mathbb{R}^2, \ 2x + y^2 > 2, \ x > y\}$$

and decide, whether it is open or closed. Justify your claim.

4. Let

$$f(x,y) = \frac{x^2 + 2y}{y^2 + 1}$$

Compute ∇f and $\nabla^2 f$.

/5

5. Write the equation of the tangent plane to the function

$$f(x,y) = y\sqrt{x^2 + y}$$

at $(x_0, y_0) = (2, 5)$.

Points: /5

/5

/5

/5

Points:

Points:

Points:

Points:

Name:		
	Points:	/25
1. Compute $\lim_{x \to \infty} \frac{x \sin x}{x}$		
$x \rightarrow 0 \ 1 - \cos x$	Points:	/5
2. Sketch the set $M = \{(x,y) \in \mathbb{R}^2, \ x^2 + 4y^2 < 16, \ x < y\}$		
and decide, whether it is open or closed. Justify your claim.		
	Points:	/5
3. Examine the limit $\lim_{(x,y)\to(0,0)}\frac{xy}{x^2+y^2}.$		
	Points:	/5
4. Let $f(x,y) = \frac{x+y^2}{y^2+1}$		
Compute ∇f and $\nabla^2 f$.		
	Points:	/5
5. Write the second-degree Taylor polynomial centered at $(0,0)$ of		
$f(x,y) = (y+1)e^x.$		

Points: /5

Name:

- 1. Compute
- 2. Write the third-degree Taylor polynomial at $x_0 = 0$ of
- 3. Find the countour lines at heights $z_0 = -1, 0, 1$ of

$$f(x,y) = (x+y)^2 - 1$$

 $f(x,y) = \frac{x+y^2}{x^2+1}$

 $f(x) = (1+x)e^x.$

and make their sketch.

4. Let

Compute ∇f and $\nabla^2 f$.

5. Write the equation of the tangent plane to the function

$$f(x,y) = x\sqrt{x^2 + y}$$

at $(x_0, y_0) = (2, 5)$.

Points: /5

 $\lim_{x \to 0} \frac{e^x - x - 1}{x^2 \cos x}.$

Points: /5

/25

/5

Points:

Points: /5

Points: /5

Points: