1. Write the third-degree Taylor polynomial at $x_{0}=0$ of

$$
f(x)=(1+x) e^{x}
$$

Points:
2. Find the maximal domain of

$$
f(x, y)=\frac{x^{2}+y}{1-\sqrt{x^{2}+y}}
$$

and make its sketch.
Points:
3. Sketch the set

$$
M=\left\{(x, y) \in \mathbb{R}^{2}, 2 x+y^{2}>2, x>y\right\}
$$

and decide, whether it is open or closed. Justify your claim.

Points:

4. Let

$$
f(x, y)=\frac{x^{2}+2 y}{y^{2}+1}
$$

Compute ∇f and $\nabla^{2} f$.
Points:
5. Write the equation of the tangent plane to the function

$$
f(x, y)=y \sqrt{x^{2}+y}
$$

at $\left(x_{0}, y_{0}\right)=(2,5)$.

1. Compute

$$
\lim _{x \rightarrow 0} \frac{x \sin x}{1-\cos x}
$$

2. Sketch the set

$$
M=\left\{(x, y) \in \mathbb{R}^{2}, x^{2}+4 y^{2}<16, x<y\right\}
$$

and decide, whether it is open or closed. Justify your claim.

Points:

3. Examine the limit

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}
$$

4. Let

$$
f(x, y)=\frac{x+y^{2}}{y^{2}+1}
$$

Compute ∇f and $\nabla^{2} f$.
Points:
5. Write the second-degree Taylor polynomial centered at $(0,0)$ of

$$
f(x, y)=(y+1) e^{x}
$$

1. Compute

$$
\lim _{x \rightarrow 0} \frac{e^{x}-x-1}{x^{2} \cos x}
$$

Points:
2. Write the third-degree Taylor polynomial at $x_{0}=0$ of

$$
f(x)=(1+x) e^{x}
$$

Points: /5
3. Find the countour lines at heights $z_{0}=-1,0,1$ of

$$
f(x, y)=(x+y)^{2}-1
$$

and make their sketch.

Points:

4. Let

$$
f(x, y)=\frac{x+y^{2}}{x^{2}+1}
$$

Compute ∇f and $\nabla^{2} f$.

Points:

5. Write the equation of the tangent plane to the function

$$
f(x, y)=x \sqrt{x^{2}+y}
$$

at $\left(x_{0}, y_{0}\right)=(2,5)$.

