1. Does the equation

$$
x^{2} y-x y^{2}=0
$$

define a function $y(x)$ on the neighborhood of $(1,1)$? If yes, compute $y^{\prime}(1)$.

Points:

2. Examine the local extremes of

$$
f(x, y)=x^{3}+x^{2} y-y^{2}-4 y
$$

Points:
3. Rewrite the second order equation

$$
2 y^{\prime \prime}+3 y^{\prime}+6 y=0
$$

into a system of first-order differential equations.

Points:

4. The fundamental system of

$$
x^{\prime}=A x
$$

is

$$
\left\{e^{t}\binom{3}{1}, e^{-2 t}\binom{0}{1}\right\}
$$

Find the particular solution satisfying

$$
x(0)=\binom{1}{-1}
$$

Points:
5. Find the critical points of the system

$$
\begin{aligned}
x^{\prime}(t) & =x(y-1) \\
y^{\prime}(t) & =(y-1) y
\end{aligned}
$$

Then sketch several representative trajectories in a phase plane.

