1. Let A and B be given as

$$
A=\left(\begin{array}{ccc}
2 & 2 & -1 \\
1 & 0 & 1
\end{array}\right), \quad B=\left(\begin{array}{cc}
1 & 1 \\
1 & -1 \\
0 & 1
\end{array}\right)
$$

- Compute $C=B A$.
- Compute C^{-1}.

> Points:
2. Consider a function $f(x)=\sqrt{x^{2}+6 x+3}-\sqrt[3]{x+1}$.

- Find a maximal domain of f (i.e., find all $x \in \mathbb{R}$ for which is $f(x)$ well defined.)
- Determine, whether the function is even, odd or none of these. Justify your claim.
- Compute $f^{\prime}(x)$ and $f^{\prime \prime}(x)$.

3. Examine the course of the function

$$
f(x)=2 x^{2} e^{-x}
$$

(Recall that the following six steps are needed: 1, determine the domain, 2, examine parity, intersections with axis, etc., 3 , examine the behavior of the function on the edges of the domain (including asymptotes), 4, examine the monotonicity of the function (including local maxima/minima), 5 , examine convexity/concavity (including points of inflexion), 6 , draw a sketch of a graph)

Points:
4. Let f be given as

$$
f(x, y)=\sqrt{x^{2}+4} e^{x y}
$$

- Find ∇f and $\nabla^{2} f$.
- Write the second degree Taylor polynomial centered at the point $(0,0)$.
- Use the result of the previous point to compute the approximate value of $\sqrt{5} e^{0.1}$.

