1. Find all eigenvalues and appropriate eigenvectors of the matrix A given as

$$
A=\left(\begin{array}{ccc}
1 & 0 & 12 \\
2 & -5 & 0 \\
1 & 0 & 2
\end{array}\right)
$$

Points:
2. Examine the course of the function

$$
f(x)=x^{2}\left(4-x^{2}\right)
$$

(Recall that the following six steps are needed: 1, determine the domain, 2, examine parity, intersections with axis, etc., 3 , examine the behavior of the function on the edges of the domain (including asymptotes), 4 , examine the monotonicity of the function (including local maxima/minima), 5, examine convexity/concavity (including points of inflexion), 6 , draw a sketch of a graph)

Points:
3. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given as

$$
f(x, y)=\frac{x^{2}+2}{y}
$$

- Find and sketch the maximal domain of f.
- Decide whether is the domain from the preivous step open or closed. Justify your claim.
- Find and sketch the contour lines at heights $c=-2,-1,0,1,0$.

4. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given as

$$
f(x, y)=y^{3}+x^{2}-6 x y+3 x+6 y-7 .
$$

- Find ∇f and use it do determine the stationary points.
- Compute $\nabla^{2} f$.
- Classify the local extrema appearing in the stationary points.

