1. The sequence a_{n} is given as

$$
a_{n}=\frac{2 k+1}{(k+1)^{2} k^{2}}
$$

- Find $\lim a_{n}$.
- Denote by $s_{k}=\sum_{n=1}^{k} a_{k}$ the $k-t h$ partial sum. Write s_{1}, s_{2}, s_{3} and s_{4}.
- Decide, whether

$$
\sum_{n=1}^{\infty} a_{n}
$$

is finite or not. Justify your claim.
Points:
2. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function given as

$$
f(x, y)=\frac{x y}{x^{2}-x y}
$$

- Find (and sketch) the maximal domain of f.
- Compute

$$
\lim _{(x, y) \rightarrow(0,0)} f(x, y)
$$

- Compute ∇f.
- Compute $\nabla^{2} f$.

Points:

3. Let $\left(x_{0}, y_{0}\right)=(2,0)$. Is there a function $y(x)$ uniquely determined by

$$
x^{2} y-x e^{y}=2
$$

on a neighborhood of $\left(x_{0}, y_{0}\right)$? Justify your claim. If there is such function then

- decide, whether is this function increasing or decreasing in the point x_{0}.
- Write the second order Taylor polynomial for $y(x)$ centered in x_{0}.

Points:

4. Consider

$$
y(n+2)-6 y(n+1)+5 y(n)=n+1
$$

- Find all solutions to the appropriate homogeneous system.
- Find one particular solution to the above system.
- Based on the previous steps, write all solutions to the above system.
- Write the particular solution satisfying $y(0)=3$ and $y(1)=1$.

