1. Consider vectors

$$
v_{1}=(1,0,2), v_{2}=(0,1,1), v_{3}=(1,-1,2), w=(2,2,0)
$$

- Do the vectors v_{1}, v_{2}, v_{3} form a basis of \mathbb{R}^{3} ? Justify your claim.
- Write w as a linear combination of v_{1}, v_{2} and v_{3} (find the coordinates of w with respect to the basis $\left\{v_{1}, v_{2}, v_{3}\right\}$).

2. Let a_{n} be a sequence given as

$$
a_{n}=\sqrt{n^{2}+1}-\sqrt{n^{2}+2 n+2}
$$

- Compute $\lim a_{n}$.
- Let $s_{k}=\sum_{n=1}^{k} a_{n}$ be the $k-$ th partial sum. Write s_{1}, s_{2}, s_{3}
- Does the sum

$$
\sum_{n=1}^{\infty} a_{n}
$$

converge or diverge? Justify your claim.

Points:
3. Consider the equation

$$
x^{2}+y \cos x=1
$$

- Does this equation uniquely determine a function $y(x)$ on the neighborhood of the point $(0,1)$?
- Compute $y^{\prime}(0)$ and $y^{\prime \prime}(0)$.

4. Let $M \subset \mathbb{R}^{2}$ be given as

$$
M:=\left\{(x, y) \in \mathbb{R}^{2}, x y \geq \frac{1}{2}, 0<x \leq 2,0<y \leq 2\right\}
$$

and $f: M \rightarrow \mathbb{R}$ be given as

$$
f(x, y)=x^{2}+4 y^{2} .
$$

- Is M open or closed? Justify your claim.
- Sketch M and dismantle it into the interior and boundary.
- Find all points where there could be an extreme of f on M.
- Determine the maximum and minimum of f on M.

