1. Consider vectors

$$v_1 = (1, 0, 2), v_2 = (0, 1, 1), v_3 = (1, -1, 2), w = (2, 2, 0)$$

- Do the vectors v_1, v_2, v_3 form a basis of \mathbb{R}^3 ? Justify your claim.
- Write w as a linear combination of v_1 , v_2 and v_3 (find the coordinates of w with respect to the basis $\{v_1, v_2, v_3\}$).

Points: /22

2. Let a_n be a sequence given as

$$a_n = \sqrt{n^2 + 1} - \sqrt{n^2 + 2n + 2}$$

- Compute $\lim a_n$.
- Let $s_k = \sum_{n=1}^k a_n$ be the k-th partial sum. Write s_1, s_2, s_3
- Does the sum

$$\sum_{n=1}^{\infty} a_n$$

Points:

Points:

/25

/23

3. Consider the equation

$$x^2 + y\cos x = 1.$$

- Does this equation uniquely determine a function y(x) on the neighborhood of the point (0,1)?
- Compute y'(0) and y''(0).

4. Let $M \subset \mathbb{R}^2$ be given as

$$M := \{ (x, y) \in \mathbb{R}^2, \, xy \ge \frac{1}{2}, \, 0 < x \le 2, \, 0 < y \le 2 \}$$

and $f: M \to \mathbb{R}$ be given as

$$f(x,y) = x^2 + 4y^2$$

• Is M open or closed? Justify your claim.

converge or diverge? Justify your claim.

- Sketch M and dismantle it into the interior and boundary.
- Find all points where there could be an extreme of f on M.
- Determine the maximum and minimum of f on M.

Points: /30