1. Find the inverse matrix to

$$
A=\left(\begin{array}{ll}
2 & 0 \\
2 & 1
\end{array}\right)
$$

Then use it to find the matrix X which solves

$$
A X=\left(\begin{array}{cc}
1 & 0 \\
-2 & 1
\end{array}\right)+\left(\begin{array}{ll}
1 & -1
\end{array}\right)\binom{-2}{1}
$$

Points:
2. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given as

$$
f(x, y)=4 x^{3}-3 x y^{2}+12 y
$$

- Find all stationary points of f.
- Decide, whether there are (local) extremes in the stationary points of f.

3. Consider the system

$$
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)=\left(\begin{array}{lll}
0 & 2 & 2 \\
2 & 0 & 2 \\
2 & 2 & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)+\left(\begin{array}{l}
4 \\
0 \\
0
\end{array}\right)
$$

- Find all solutions to the appropriate homogeneous system.
- Find one particular solution to the system with non-zero right hand side.
- Find the particular solution satisfying

$$
\left(\begin{array}{l}
x(0) \\
y(0) \\
z(0)
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
2
\end{array}\right) .
$$

Points:
4. Consider the system

$$
\begin{aligned}
x^{\prime} & =y^{2} \\
y^{\prime} & =x y .
\end{aligned}
$$

- Find all the critical points of the above system.
- Write the equation for trajectories (in particular, the equation for $\frac{d y}{d x}$).
- Solve the equation from the previous step and sketch the trajectories of the system.

