1. Let A be given as

$$
A=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-4 & 1 & -2 \\
-4 & 0 & -1
\end{array}\right)
$$

Find all eigenvalues and the appropriate eigenvectors of A.

> Points:
2. Examine the course of the function

$$
f(x)=\frac{x^{2}}{x-1}
$$

(Recall that the following six steps are needed: 1, determine the domain, 2, examine parity, intersections with axis, etc., 3 , examine the behavior of the function on the edges of the domain (including asymptotes), 4, examine the monotonicity of the function (including local maxima/minima), 5, examine convexity/concavity (including points of inflexion), 6 , draw a sketch of a graph)

Points:
3. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given as

$$
f(x, y)=\frac{x^{2}-y^{2}}{x^{2}+y^{2}}
$$

- Determine and sketch the maximal domain of f.
- Examine

$$
\lim _{(x, y) \rightarrow(0,0)} f(x, y)
$$

- Compute ∇f.

Points:

4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given as

$$
f(x, y)=\left(x^{2}+1\right) e^{y}-2 x
$$

- Evaluate ∇f at the point $\left(x_{0}, y_{0}\right)=(1,0)$
- Check, whether $f(1,0)=0$.
- Based on the previous step, determine whether there is a uniquely determined function $y(x)$ on the neighborhood of the point $(1,0)$ given by the equation $f(x, y)=0$.
- If there is such function, compute $y^{\prime}(1)$.

