1. Let there are given vectors

$$
\begin{aligned}
u & =(1,0,-1,-1), \\
v & =(2,1,1,-1), \\
w & =(0,3,-2,2), \\
z & =(1,5,3,3) .
\end{aligned}
$$

- Decide, whether u, v and w are linearly independent.
- Express z as a linear combination of u, v and w if it is possible.

Points:
2. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given as

$$
f(x, y)=\frac{\sqrt{1-y^{2}}}{x}
$$

- Describe and sketch the domain of f.
- Find the contour lines at heights $c=-1, c=0$ and $c=1$ and sketch them.
- Compute ∇f.
- Compute $\nabla^{2} f$.

Points:
3. Let the function f be given as

$$
f(x, y)=x-y
$$

and the set M be given as

$$
\left\{(x, y) \in \mathbb{R}^{2}, x^{2}+2 y^{2}-2 x y \leq 25\right\}
$$

- Decompose M into interior and boundary.
- Find stationary points of f in interior.
- Use the Lagrange multiplier method to find the stationary points of f on the boundary.
- Determine the maximum and minimum of f achieved on M.

Points:
4. The linear system of two unknowns

$$
\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{cc}
-1 & 4 \\
4 & -1
\end{array}\right)\binom{x}{y}+\binom{11}{1}
$$

has only one stationary point.

- Find the stationary point.
- Classify it (decide, whether it is stable/unstable node, stable/unstable spiral, saddle or center).

