1. Consider a matrix

$$
A=\left(\begin{array}{ccc}
1 & -1 & 1 \\
1 & -3 & 3 \\
1 & 1 & -1
\end{array}\right)
$$

(a) Explain what is a singular matrix and what is a regular matrix.
(b) Compute $\operatorname{det} A$.
(c) Determine, whether A is singular or regular.
(d) Find all vectors $v=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$ fulfilling

$$
A v=0
$$

Points:
2. Consider an equation

$$
x^{3}+y^{3}-3 x y-3=0 .
$$

(a) Does there exist a function $y(x)$ given by the equation on some neighborhood of a point $(1,2)$? Carefully verify all needed assumptions.
(b) Compute $y^{\prime}(1)$ for the function from the previous step.
(c) Write an equation of the tangent line to the graph of the function y at the point $(1,2)$.

Points:

3. Consider the function

$$
f(x, y)=x^{2}-y^{2}
$$

and a triangle M with vertices $(-1,1),(-1,4)$, and $(3,0)$.
(a) Sketch M and find the equations of the edges of the triangle.
(b) Find the stationary points of f lying inside the triangle.
(c) Find the points where there might be an extreme of f on the boundary of the triangle.
(d) Determine the maximum and the minimum of f with respect to M and write the points where the maximium and minimum are achieved.
4. Consider a system of ODE

$$
x^{\prime}(t)=\left(\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 0 \\
2 & 1 & 2
\end{array}\right) x(t)
$$

(a) Find all solutions to the given system.
(b) Find a solution which satisfies $x(0)=\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right)$.

