1. Consider the matrix

$$
A=\left(\begin{array}{ccc}
1 & -1 & 1 \\
1 & -3 & 3 \\
1 & 1 & -1
\end{array}\right)
$$

(a) Explain, what is a singular and what is a regular matrix.
(b) Compute $\operatorname{det} A$.
(c) Determine whether A is singular or regular.
(d) Find all vectors $v=(x, y, z)$ such that

$$
A v^{T}=0
$$

Points:

2. Examine the course of the function

$$
f(x)=\frac{x^{2}-3 x}{x+1}
$$

(Recall that the following six steps are needed: 1, determine the domain, 2, examine parity, intersections with axis, etc., 3 , examine the behavior of the function on the edges of the domain (including asymptotes), 4, examine the monotonicity of the function (including local maxima/minima), 5 , examine convexity/concavity (including points of inflexion), 6 , draw a sketch of a graph)

Points:
3. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given as

$$
f(x, y)=\frac{x}{\sqrt{x^{2}+y^{2}}}
$$

- Determine the domain of f.
- Compute ∇f.
- Compute $\nabla^{2} f$.

> Points:
4. Examine the local extrema of

$$
f(x, y)=x^{2}+y^{2}+2 x+4 y-1
$$

