Systems of Ordinary Differential Equations

Václav Mácha
University of Chemistry and Technology

Example Let Q be aggregate supply, p be the price level, and π be the expected rate of inflation. Further, let Q^{*} be the long-run sustainable level output. We deduce

$$
p^{\prime}(t)=h\left(Q^{*}-Q\right)+\pi(t) \text { for some } h>0
$$

Next, we assume adaptive expectations, i.e.

$$
\pi^{\prime}(t)=k\left(p^{\prime}(t)-\pi(t)\right) \text { for some } k>0
$$

which turns into

$$
\pi^{\prime}(t)=k h\left(Q^{*}-Q\right)
$$

Example Let Q be aggregate supply, p be the price level, and π be the expected rate of inflation. Further, let Q^{*} be the long-run sustainable level output. We deduce

$$
p^{\prime}(t)=h\left(Q^{*}-Q\right)+\pi(t) \text { for some } h>0
$$

Next, we assume adaptive expectations, i.e.

$$
\pi^{\prime}(t)=k\left(p^{\prime}(t)-\pi(t)\right) \text { for some } k>0
$$

which turns into

$$
\pi^{\prime}(t)=k h\left(Q^{*}-Q\right)
$$

Assume $Q=Q(t)=a+b p(t)-c \pi(t)$ where $a>0, b>0$ and $c>0$.

Example Let Q be aggregate supply, p be the price level, and π be the expected rate of inflation. Further, let Q^{*} be the long-run sustainable level output. We deduce

$$
p^{\prime}(t)=h\left(Q^{*}-Q\right)+\pi(t) \text { for some } h>0
$$

Next, we assume adaptive expectations, i.e.

$$
\pi^{\prime}(t)=k\left(p^{\prime}(t)-\pi(t)\right) \text { for some } k>0
$$

which turns into

$$
\pi^{\prime}(t)=k h\left(Q^{*}-Q\right)
$$

Assume $Q=Q(t)=a+b p(t)-c \pi(t)$ where $a>0, b>0$ and $c>0$. Consequently

$$
\begin{aligned}
& p^{\prime}(t)=-h b p(t)+(1+h c) \pi(t)-h a+h Q^{*} \\
& \pi^{\prime}(t)=-k h b p(t)+k h c \pi(t)-k h a+k h Q^{*}
\end{aligned}
$$

Example Let Q be aggregate supply, p be the price level, and π be the expected rate of inflation. Further, let Q^{*} be the long-run sustainable level output. We deduce

$$
p^{\prime}(t)=h\left(Q^{*}-Q\right)+\pi(t) \text { for some } h>0
$$

Next, we assume adaptive expectations, i.e.

$$
\pi^{\prime}(t)=k\left(p^{\prime}(t)-\pi(t)\right) \text { for some } k>0
$$

which turns into

$$
\pi^{\prime}(t)=k h\left(Q^{*}-Q\right)
$$

Assume $Q=Q(t)=a+b p(t)-c \pi(t)$ where $a>0, b>0$ and $c>0$. Consequently

$$
\begin{aligned}
& p^{\prime}(t)=-h b p(t)+(1+h c) \pi(t)-h a+h Q^{*} \\
& \pi^{\prime}(t)=-k h b p(t)+k h c \pi(t)-k h a+k h Q^{*}
\end{aligned}
$$

Crucial question: for which choice of constants is this system stable?

In what follows, we tackle the system

$$
\begin{equation*}
x^{\prime}(t)=A x(t)+b(t) \tag{1}
\end{equation*}
$$

where the unknown $x(t)$ is a vector

$$
x(t)=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\ldots \\
x_{n}
\end{array}\right)
$$

and A is n by n matrix and b is n-dimensional vector.

In what follows, we tackle the system

$$
\begin{equation*}
x^{\prime}(t)=A x(t)+b(t) \tag{1}
\end{equation*}
$$

where the unknown $x(t)$ is a vector

$$
x(t)=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\ldots \\
x_{n}
\end{array}\right)
$$

and A is n by n matrix and b is n-dimensional vector.

Definition

The set of functions defined on \mathbb{R} and solving (1) is called a general solution. One of this function is called a particular solution.

Higher order linear equation as a linear equation:

Example

■ Rewrite

$$
y^{\prime \prime}+k y^{\prime}+m y=0
$$

as a system of first-order ODEs.

Higher order linear equation as a linear equation:

Example

■ Rewrite

$$
y^{\prime \prime}+k y^{\prime}+m y=0
$$

as a system of first-order ODEs.
■ Rewrite the following in matrix notation:

$$
\begin{align*}
x^{\prime} & =x+y+z \\
y^{\prime} & =2 z-x \tag{2}\\
z^{\prime} & =4 y
\end{align*}
$$

Higher order linear equation as a linear equation:

Example

■ Rewrite

$$
y^{\prime \prime}+k y^{\prime}+m y=0
$$

as a system of first-order ODEs.
■ Rewrite the following in matrix notation:

$$
\begin{align*}
x^{\prime} & =x+y+z \\
y^{\prime} & =2 z-x \tag{2}\\
z^{\prime} & =4 y
\end{align*}
$$

- Express

$$
\begin{array}{r}
x^{\prime \prime}+3 x+2 y=0 \\
y^{\prime \prime}-2 x=0 \tag{3}
\end{array}
$$

as a system of first order ODEs

Classification:
■ $b \equiv 0$ - homogeneous equation (i.e., $x^{\prime}(t)=A(x)$)
■ b non-zero - non-homogeneous equation

Classification:

■ $b \equiv 0$ - homogeneous equation (i.e., $x^{\prime}(t)=A(x)$)

- b non-zero - non-homogeneous equation

Theorem

Let $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ be n linearly independent solutions to the homogeneous system

$$
\begin{equation*}
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t) \tag{4}
\end{equation*}
$$

Then every solution to (4) can be expressed in the form

$$
\mathbf{x}(t)=c_{1} \mathbf{x}_{1}(t)+\ldots+c_{n} \mathbf{x}_{n}(t)
$$

where c_{1}, \ldots, c_{n} are real constants.

Definition

A set of solutions $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\}$ that are linearly independent is called a fundamental solution set for (4).

As always, we assume that the solution is certain exponential with proper coefficients. In particular, consider

$$
x^{\prime}=A x
$$

and assume that the solution is in the form

$$
x(t)=e^{\lambda t} v
$$

where v is a vector with constant coefficients.

As always, we assume that the solution is certain exponential with proper coefficients. In particular, consider

$$
x^{\prime}=A x
$$

and assume that the solution is in the form

$$
x(t)=e^{\lambda t} v
$$

where v is a vector with constant coefficients.

Lemma

Let A be n by n matrix with n distinct real eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ and with corresponding eigenvectors v_{1}, \ldots, v_{n}. Then the fundamental solution set is

$$
\left\{e^{\lambda_{1} t} v_{1}, \ldots, e^{\lambda_{n} t} v_{n}\right\}
$$

Example

- Find the fundamental solution set of

$$
x^{\prime}=\left(\begin{array}{cc}
-\frac{1}{3} & \frac{1}{12} \\
\frac{1}{3} & -\frac{1}{3}
\end{array}\right) x .
$$

Real not-distinct eigenvalues (especially double roots):

Real not-distinct eigenvalues (especially double roots):

Examples

■ Solve

$$
\mathbf{x}^{\prime}=A \mathbf{x}
$$

where $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.

Real not-distinct eigenvalues (especially double roots):
Examples
■ Solve

$$
\mathbf{x}^{\prime}=A \mathbf{x}
$$

where $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.
■ Solve

$$
\mathbf{x}^{\prime}=\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 3 & 0 \\
0 & 1 & 1
\end{array}\right) \mathbf{x}
$$

Matrix exponential

Recall

$$
e^{x}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\ldots=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
$$

Similarly, let A be a square matrix. Then we write

$$
e^{A t}=I+A t+\frac{A^{2} t^{2}}{2}+\frac{A^{3} t^{3}}{6}+\ldots
$$

Matrix exponential

Recall

$$
e^{x}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\ldots=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
$$

Similarly, let A be a square matrix. Then we write

$$
e^{A t}=I+A t+\frac{A^{2} t^{2}}{2}+\frac{A^{3} t^{3}}{6}+\ldots
$$

Let \mathbf{v} be an eigenvector and w be a generalized eigenvector. How about $e^{A t} v$ and $e^{A t} w$?

Complex eigenvalues:

Example

■ Find the general solution to

$$
x^{\prime}=\left(\begin{array}{cc}
-1 & 2 \\
-1 & -3
\end{array}\right) \mathbf{x}
$$

Complex eigenvalues:

Example

■ Find the general solution to

$$
\mathbf{x}^{\prime}=\left(\begin{array}{cc}
-1 & 2 \\
-1 & -3
\end{array}\right) \mathbf{x}
$$

Theorem

If the real matrix A has complex eigenvalues $\alpha \pm \beta i$ with corresponding eigenvectors $\mathbf{a}+i \mathbf{b}$, then the two linearly independent real vector solutions to $\mathbf{x}^{\prime}=A \mathbf{x}$ are

$$
\begin{aligned}
& e^{\alpha t} \cos \beta t \mathbf{a}-e^{\alpha t} \sin \beta \mathbf{t} \mathbf{b} \\
& e^{\alpha t} \sin \beta t \mathbf{a}+e^{\alpha t} \cos \beta t \mathbf{b} .
\end{aligned}
$$

Non-homogeneous systems - method of undetermined coefficients

Exercise

■ Solve

$$
x^{\prime}=\left(\begin{array}{ccc}
1 & -2 & 2 \\
-2 & 1 & 2 \\
2 & 2 & 1
\end{array}\right) x+t\left(\begin{array}{c}
-9 \\
0 \\
-18
\end{array}\right)
$$

Non-homogeneous systems - method of undetermined coefficients Exercise

- Solve

$$
x^{\prime}=\left(\begin{array}{ccc}
1 & -2 & 2 \\
-2 & 1 & 2 \\
2 & 2 & 1
\end{array}\right) x+t\left(\begin{array}{c}
-9 \\
0 \\
-18
\end{array}\right)
$$

Lemma

Let the right hand side $b(t)=e^{r t} t^{m} f$ where $f \in \mathbb{R}^{n}$. Then one solution to

$$
x^{\prime}=A x+b
$$

is of the form

$$
t^{s} e^{r t}\left(a_{m} t^{m}+a_{m-1} t^{m-1}+\ldots+t a_{1}+a_{0}\right)
$$

where $s=0$ if r is not a root of $\operatorname{det}(A-\lambda I)$, $s=1$ if r is a single root of $\operatorname{det}(A-\lambda I), s=2$ if r is a double root of $\operatorname{det}(A-\lambda I)$ and so on.

Exercise

- Find all solutions to

$$
x^{\prime}=\left(\begin{array}{ccc}
2 & -2 & 3 \\
0 & 3 & 2 \\
0 & 1 & 2
\end{array}\right) x+\left(\begin{array}{c}
e^{-2 t} \\
2 \\
1
\end{array}\right)
$$

Lemma

Let x_{1} solves

$$
x^{\prime}=A x+b_{1}
$$

and let x_{2} solves

$$
x^{\prime}=A x+b_{2}
$$

Then $x_{1}+x_{2}$ solves

$$
x^{\prime}=A x+\left(b_{1}+b_{2}\right)
$$

Exercise A cosmetic manufacturer has a marketing policy based upon the price $x(t)$ of its salon shampoo. The production $P(t)$ and the sales $S(t)$ are given in terms of the price $x(t)$ and the change in price $x^{\prime}(t)$ by the equations

$$
\begin{aligned}
& P(t)=4-\frac{3}{4} x(t)-8 x^{\prime}(t) \\
& S(t)=15-4 x(t)-2 x^{\prime}(t)
\end{aligned}
$$

The differential equations for the price $x(t)$ and inventory level $I(t)$ are

$$
x^{\prime}(t)=k\left(I(t)-I_{0}\right), \quad I^{\prime}(t)=P(t)-S(t)
$$

We can reformulate it as

$$
\begin{aligned}
x^{\prime}(t) & =k\left(I(t)-I_{0}\right) \\
I^{\prime}(t) & =\frac{13}{4} x(t)-6 k I(t)+6 k I_{0}-11
\end{aligned}
$$

Find the evolution of prices for $k=1, I_{0}=50$ and initial values
$x(0)=10$ and $I(0)=7$.

Systems in a plane: the unknown vector is in the form

$$
\binom{x}{y}=\binom{x(t)}{y(t)}
$$

In general, the system can be written as

$$
\begin{align*}
& x^{\prime}=f(x, y) \\
& y^{\prime}=g(x, y) \tag{5}
\end{align*}
$$

Systems in a plane: the unknown vector is in the form

$$
\binom{x}{y}=\binom{x(t)}{y(t)}
$$

In general, the system can be written as

$$
\begin{align*}
& x^{\prime}=f(x, y) \\
& y^{\prime}=g(x, y) \tag{5}
\end{align*}
$$

Exercises

■ Solve

$$
\begin{align*}
& x^{\prime}=x \\
& y^{\prime}=2 y \tag{6}
\end{align*}
$$

$$
\begin{align*}
& x^{\prime}=-x \\
& y^{\prime}=-2 y \tag{7}
\end{align*}
$$

Definition

If $x(t)$ and $y(t)$ is a solution pair to (5) for t in the interval I, then a plot in the $x y$-plane of the parametrized curve $(x(t), y(t))$ for $t \in I$, together with arrows indicating its direction with increasing t, is said to be a trajectory of the system. In such context we call the $x y$-plane the phase plane.

How to draw the trajectory? If y is a function of x, then

$$
\frac{\partial y}{\partial x}=\frac{\frac{\partial y}{\partial t}}{\frac{\partial x}{\partial t}}=\frac{g(x, y)}{f(x, y)}
$$

Definition

If $x(t)$ and $y(t)$ is a solution pair to (5) for t in the interval I, then a plot in the $x y$-plane of the parametrized curve $(x(t), y(t))$ for $t \in I$, together with arrows indicating its direction with increasing t, is said to be a trajectory of the system. In such context we call the $x y$-plane the phase plane.

How to draw the trajectory? If y is a function of x, then

$$
\frac{\partial y}{\partial x}=\frac{\frac{\partial y}{\partial t}}{\frac{\partial x}{\partial t}}=\frac{g(x, y)}{f(x, y)}
$$

Exercise

- Draw the trajectories for the two exercises from the previous slide.

Definition

A point $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$ where $f\left(x_{0}, y_{0}\right)=g\left(x_{0}, y_{0}\right)=0$ is called a critical point (or equilibrium point) of the given system. The corresponding solution $x \equiv x_{0}$ and $y \equiv y_{0}$ is called an equilibrium solution (or stationary solution).

Lemma

Let $x(t)$ and $y(t)$ be a solution on $[0, \infty)$ to the given system where f and g are continuous. If the limits

$$
\lim _{t \rightarrow \infty} x(t)=x_{0}, \quad \lim _{t \rightarrow \infty} y(t)=y_{0}
$$

exist and are finite, then $\left(x_{0}, y_{0}\right)$ is the critical point of the system.

Exercises

■ Find the critical points and sketch the trajectories in the phase plane for

$$
\begin{aligned}
& x^{\prime}=-y(y-2) \\
& y^{\prime}=(x-2)(y-2)
\end{aligned}
$$

What is the behavior of the solution starting from $(3,0),(5,0)$ and $(2,3)$?
■ Sketch several representative trajectories of

$$
\begin{aligned}
x^{\prime} & =\frac{3}{y} \\
y^{\prime} & =\frac{2}{x}
\end{aligned}
$$

Reminder

Exercises

■ Recall the example of Romeo and Juliet. Let R denotes Romeo's passion for Juliet ($R>0$ means love, $R<0$ is hate) and let J denote the love of Juliet toward Romeo. Let R and J be governed by

$$
\begin{aligned}
R^{\prime} & =J \\
J^{\prime} & =-R
\end{aligned}
$$

Sketch the trajectory starting at $(1,1)$ into the phase plane.

- Find the critical points and the equation for trajectories for the system

$$
\begin{aligned}
x^{\prime} & =y-1 \\
y^{\prime} & =e^{x+y} .
\end{aligned}
$$

- Find the critical points and draw by hand several representative trajectories for the system

$$
\begin{aligned}
x^{\prime} & =-8 y \\
y^{\prime} & =18 x
\end{aligned}
$$

Sketch a phase diagram for

$$
\begin{aligned}
x^{\prime} & =5 x-3 y \\
y^{\prime} & =4 x-3 y
\end{aligned}
$$

Sketch a phase diagram for

$$
\begin{aligned}
& x^{\prime}=5 x-3 y \\
& y^{\prime}=4 x-3 y
\end{aligned}
$$

Types of equilibria:

Sketch a phase diagram for

$$
\begin{aligned}
x^{\prime} & =5 x-3 y \\
y^{\prime} & =4 x-3 y
\end{aligned}
$$

Types of equilibria:

stable node, unstable node, stable spiral, unstable spiral, saddle, center
Classification of linear systems
■ Negative eigenvalues - stable node

- Positive eigenvalues - unstable node
- Negative and positive eigenvalue - saddle

■ Purely imaginary eigenvalues - center
■ Complex eigenvalues - spiral (stable if $\operatorname{Re} \lambda<0$, unstable if $\operatorname{Re} \lambda>0)$.

Exercise

- Classify the equilibria of

$$
\begin{aligned}
& x^{\prime}=-5 x+2 y+5 \\
& y^{\prime}=x-4 y-1
\end{aligned}
$$

and sketh a phase diagram for this system.

- Classify the equilibria

$$
\begin{aligned}
& x^{\prime}=5 x-3 y+9 \\
& y^{\prime}=4 x-3 y-6
\end{aligned}
$$

Almost linear systems

Definition

An almost linear system is a system of the form

$$
\begin{aligned}
& x^{\prime}=a_{11} x+a_{12} y+f(x, y) \\
& y^{\prime}=a_{21} x+a_{22} y+g(x, y)
\end{aligned}
$$

where f and g satisfies

$$
\lim _{(x, y) \rightarrow 0} \frac{f(x, y)}{\sqrt{x^{2}+y^{2}}}=0, \quad \lim _{(x, y) \rightarrow 0} \frac{g(x, y)}{\sqrt{x^{2}+y^{2}}}=0
$$

The system

$$
\binom{x}{y}^{\prime}=A\binom{x}{y}, \quad A=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)
$$

is called the corresponding linear system.

