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Linear systems introduction

Example Let Q be aggregate supply, p be the price level, and π be the
expected rate of inflation. Further, let Q∗ be the long-run sustainable
level output. We deduce

p′(t) = h(Q∗ − Q) + π(t) for some h > 0.

Next, we assume adaptive expectations, i.e.

π′(t) = k(p′(t)− π(t)) for some k > 0.

which turns into
π′(t) = kh(Q∗ − Q).

Assume Q = Q(t) = a + bp(t)− cπ(t) where a > 0, b > 0 and c > 0.
Consequently

p′(t) = −hbp(t) + (1 + hc)π(t)− ha + hQ∗

π′(t) = −khbp(t) + khcπ(t)− kha + khQ∗

Crucial question: for which choice of constants is this system stable?
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Václav Mácha (UCT) ODEs 2 / 21



Linear systems introduction

In what follows, we tackle the system

x ′(t) = Ax(t) + b(t) (1)

where the unknown x(t) is a vector

x(t) =


x1

x2

. . .
xn


and A is n by n matrix and b is n−dimensional vector.

Definition

The set of functions defined on R and solving (1) is called a general
solution. One of this function is called a particular solution.
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Linear systems introduction

Higher order linear equation as a linear equation:
Example

Rewrite
y ′′ + ky ′ + my = 0

as a system of first-order ODEs.

Rewrite the following in matrix notation:

x ′ = x + y + z

y ′ = 2z − x

z ′ = 4y

(2)

Express

x ′′ + 3x + 2y = 0

y ′′ − 2x = 0
(3)

as a system of first order ODEs
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Linear systems introduction

Classification:

b ≡ 0 – homogeneous equation (i.e., x ′(t) = A(x))

b non-zero – non-homogeneous equation

Theorem

Let x1, . . . , xn be n linearly independent solutions to the homogeneous
system

x′(t) = Ax(t). (4)

Then every solution to (4) can be expressed in the form

x(t) = c1x1(t) + . . .+ cnxn(t),

where c1, . . . , cn are real constants.

Definition

A set of solutions {x1, . . . , xn} that are linearly independent is called a
fundamental solution set for (4).
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Linear systems Homogeneous systems

As always, we assume that the solution is certain exponential with proper
coefficients. In particular, consider

x ′ = Ax

and assume that the solution is in the form

x(t) = eλtv

where v is a vector with constant coefficients.

Lemma

Let A be n by n matrix with n distinct real eigenvalues λ1, . . . , λn and
with corresponding eigenvectors v1, . . . , vn. Then the fundamental
solution set is {

eλ1tv1, . . . , e
λntvn

}
.
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Linear systems Homogeneous systems

Example

Find the fundamental solution set of

x ′ =

(
−1

3
1

12
1
3 −1

3

)
x .
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Linear systems Homogeneous systems

Real not-distinct eigenvalues (especially double roots):

Examples

Solve
x′ = Ax

where A =

(
1 0
0 1

)
.

Solve

x′ =

1 0 0
1 3 0
0 1 1

 x.
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Václav Mácha (UCT) ODEs 8 / 21



Linear systems Homogeneous systems

Real not-distinct eigenvalues (especially double roots):
Examples

Solve
x′ = Ax

where A =

(
1 0
0 1

)
.

Solve

x′ =

1 0 0
1 3 0
0 1 1

 x.
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Linear systems Homogeneous systems

Matrix exponential
Recall

ex = 1 + x +
x2

2
+

x3

6
+ . . . =

∞∑
n=0

xn

n!
.

Similarly, let A be a square matrix. Then we write

eAt = I + At +
A2t2

2
+

A3t3

6
+ . . .

Let v be an eigenvector and w be a generalized eigenvector. How about
eAtv and eAtw?
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Linear systems Homogeneous systems

Complex eigenvalues:
Example

Find the general solution to

x′ =

(
−1 2
−1 −3

)
x.

Theorem

If the real matrix A has complex eigenvalues α± βi with corresponding
eigenvectors a + ib, then the two linearly independent real vector
solutions to x′ = Ax are

eαt cosβta− eαt sinβtb

eαt sinβta + eαt cosβtb.

Václav Mácha (UCT) ODEs 10 / 21



Linear systems Homogeneous systems

Complex eigenvalues:
Example

Find the general solution to

x′ =

(
−1 2
−1 −3

)
x.

Theorem

If the real matrix A has complex eigenvalues α± βi with corresponding
eigenvectors a + ib, then the two linearly independent real vector
solutions to x′ = Ax are

eαt cosβta− eαt sinβtb

eαt sinβta + eαt cosβtb.
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Linear systems Non-zero right hand side

Non-homogeneous systems – method of undetermined coefficients
Exercise

Solve

x ′ =

 1 −2 2
−2 1 2
2 2 1

 x + t

 −9
0
−18



Lemma

Let the right hand side b(t) = erttmf where f ∈ Rn. Then one solution
to

x ′ = Ax + b

is of the form

tsert
(
amt

m + am−1t
m−1 + . . .+ ta1 + a0

)
where s = 0 if r is not a root of det(A− λI ), s = 1 if r is a single root of
det(A− λI ), s = 2 if r is a double root of det(A− λI ) and so on.
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Linear systems Non-zero right hand side

Exercise

Find all solutions to

x ′ =

2 −2 3
0 3 2
0 1 2

 x +

e−2t

2
1


Lemma

Let x1 solves
x ′ = Ax + b1

and let x2 solves
x ′ = Ax + b2.

Then x1 + x2 solves
x ′ = Ax + (b1 + b2).
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Linear systems Non-zero right hand side

Exercise A cosmetic manufacturer has a marketing policy based upon
the price x(t) of its salon shampoo. The production P(t) and the sales
S(t) are given in terms of the price x(t) and the change in price x ′(t) by
the equations

P(t) = 4− 3

4
x(t)− 8x ′(t),

S(t) = 15− 4x(t)− 2x ′(t).

The differential equations for the price x(t) and inventory level I (t) are

x ′(t) = k(I (t)− I0), I ′(t) = P(t)− S(t).

We can reformulate it as

x ′(t) = k(I (t)− I0),

I ′(t) =
13

4
x(t)− 6kI (t) + 6kI0 − 11.

Find the evolution of prices for k = 1, I0 = 50 and initial values
x(0) = 10 and I (0) = 7.
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Systems in a plane Phase plane

Systems in a plane: the unknown vector is in the form(
x
y

)
=

(
x(t)
y(t)

)
In general, the system can be written as

x ′ = f (x , y)

y ′ = g(x , y)
(5)

Exercises

Solve

x ′ = x

y ′ = 2y
(6)

x ′ = −x
y ′ = −2y

(7)
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Systems in a plane Phase plane

Definition

If x(t) and y(t) is a solution pair to (5) for t in the interval I , then a
plot in the xy−plane of the parametrized curve (x(t), y(t)) for t ∈ I ,
together with arrows indicating its direction with increasing t, is said to
be a trajectory of the system. In such context we call the xy−plane the
phase plane.

How to draw the trajectory? If y is a function of x , then

∂y

∂x
=

∂y
∂t
∂x
∂t

=
g(x , y)

f (x , y)

Exercise

Draw the trajectories for the two exercises from the previous slide.

Václav Mácha (UCT) ODEs 15 / 21



Systems in a plane Phase plane

Definition

If x(t) and y(t) is a solution pair to (5) for t in the interval I , then a
plot in the xy−plane of the parametrized curve (x(t), y(t)) for t ∈ I ,
together with arrows indicating its direction with increasing t, is said to
be a trajectory of the system. In such context we call the xy−plane the
phase plane.

How to draw the trajectory? If y is a function of x , then

∂y

∂x
=

∂y
∂t
∂x
∂t

=
g(x , y)

f (x , y)

Exercise

Draw the trajectories for the two exercises from the previous slide.
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Systems in a plane Phase plane

Definition

A point (x0, y0) ∈ R2 where f (x0, y0) = g(x0, y0) = 0 is called a critical
point (or equilibrium point) of the given system. The corresponding
solution x ≡ x0 and y ≡ y0 is called an equilibrium solution (or stationary
solution).

Lemma

Let x(t) and y(t) be a solution on [0,∞) to the given system where f
and g are continuous. If the limits

lim
t→∞

x(t) = x0, lim
t→∞

y(t) = y0

exist and are finite, then (x0, y0) is the critical point of the system.
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Systems in a plane Phase plane

Exercises

Find the critical points and sketch the trajectories in the phase plane
for

x ′ = −y(y − 2)

y ′ = (x − 2)(y − 2)

What is the behavior of the solution starting from (3, 0), (5, 0) and
(2, 3)?

Sketch several representative trajectories of

x ′ =
3

y

y ′ =
2

x

Václav Mácha (UCT) ODEs 17 / 21



Systems in a plane Phase plane

Reminder
Exercises

Recall the example of Romeo and Juliet. Let R denotes Romeo’s
passion for Juliet (R > 0 means love, R < 0 is hate) and let J
denote the love of Juliet toward Romeo. Let R and J be governed by

R ′ = J

J ′ = −R
Sketch the trajectory starting at (1, 1) into the phase plane.
Find the critical points and the equation for trajectories for the
system

x ′ = y − 1

y ′ = ex+y .

Find the critical points and draw by hand several representative
trajectories for the system

x ′ = −8y

y ′ = 18x .
Václav Mácha (UCT) ODEs 18 / 21



Systems in a plane Phase plane

Sketch a phase diagram for

x ′ = 5x − 3y

y ′ = 4x − 3y .

Types of equilibria:
stable node, unstable node, stable spiral, unstable spiral, saddle, center
Classification of linear systems

Negative eigenvalues – stable node

Positive eigenvalues – unstable node

Negative and positive eigenvalue – saddle

Purely imaginary eigenvalues – center

Complex eigenvalues – spiral (stable if Re λ < 0, unstable if
Re λ > 0).
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Systems in a plane Phase plane

Exercise

Classify the equilibria of

x ′ = −5x + 2y + 5

y ′ = x − 4y − 1

and sketh a phase diagram for this system.

Classify the equilibria

x ′ = 5x − 3y + 9

y ′ = 4x − 3y − 6
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Systems in a plane Phase plane

Almost linear systems

Definition

An almost linear system is a system of the form

x ′ = a11x + a12y + f (x , y),

y ′ = a21x + a22y + g(x , y),

where f and g satisfies

lim
(x ,y)→0

f (x , y)√
x2 + y2

= 0, lim
(x ,y)→0

g(x , y)√
x2 + y2

= 0.

The system (
x
y

)′
= A

(
x
y

)
, A =

(
a11 a12

a21 a22

)
is called the corresponding linear system.
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