1. Use mathematical induction in order to show that

$$
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\ldots+\frac{1}{n(n+1)}=\frac{n}{n+1}
$$

holds for all $n \in \mathbb{N}$.
Use this formula to compute

$$
\lim _{n \rightarrow \infty}(-1)^{n}\left(\sum_{k=1}^{n} \frac{1}{k(k+1)}\right)
$$

2. Use the Taylor polynomial to $f(x)=\sqrt{x}$ at point $x_{0}=9$ of degree $n=3$ to deduce the approximate value of $\sqrt{10}$.
3. Examine the course of function

$$
f(x)=\frac{x^{2}-3 x}{x+1}
$$

(Recall that the following six steps are needed: 1, determine the domain, 2, examine parity, intersections with axis, etc., 3 , examine the behavior of the function on the edges of the domain (including asymptotes), 4 , examine the monotonicity of the function (including local maxima/minima), 5 , examine convexity/concavity (including points of inflexion), 6 , draw a sketch of a graph)
4. Consider an equation

$$
y^{\prime \prime}+2 y^{\prime}+5 y=\sin 2 x
$$

(a) Find all solution to the appropriate homogeneous problem.
(b) Use a 'special right hand side' (undetermined coefficients) method to deduce one particular solution.
(c) Write all solutions to the given problem.
(d) Find a solution fulfilling $y(0)=2, y^{\prime}(0)=-1$.

