UCT, Math, Exercise book

Václav Mácha

Obsah

1	Logic, sets, mappings	1
2	Real functions	3
3	Sequences and their limits	4
4	Functions II	6
5	Integrals	8
6	Ordinary differential equations	9
7	Series	10

1 Logic, sets, mappings

1.1 Connections.

Comple	ete the j	followin	g table:			
A	В	C	$A \lor (\neg C)$	$(A\&B) \lor C$	$A \Rightarrow (B \Rightarrow C)$	$A \lor (B \Leftrightarrow C)$
true	true	true				
true	true	false				
true	false	true				
true	false	false				
false	true	true				
false	true	false				
false	false	true				
false	false	false				
	A true true true false false false	ABtruetruetruefalsetruefalsefalsetruefalsetruefalsefalse	ABCtruetruetruetruefalsetruetruefalsetruetruefalsefalsefalsetruetruefalsetruefalsefalsetruefalsefalsefalsetrue	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

• Complete the following table:

- Have three propositions: A = 'Kutná Hora is the capital of Czechia', B = 'Praha is the capital of Czechia', C = 'two plus two is four' and D = 'Pigs can fly'. Write down the following sentences and decide about their validity:
 - 1. $A \lor B$.
 - 2. $A \Leftrightarrow D$.
 - 3. $A \Rightarrow C$.
 - 4. $C \Rightarrow A$.
 - 5. $B \lor D$.
 - 6. B&C.
 - 7. $\neg A\&C$.

1.2 Quantifiers. We define the following:

- a: Anastazia
- b: Bart
- $\bullet\ c\colon {\it Cicero}$

- B(x,y): x belongs to y
- D(x,y): x hates y
- C(x): x is a cat
- F(x): x is wild
- P(x): x is a human.

Try to rewrite the following formulas into sentences (try to make the sentences as nice as possible):

- 1. C(b)&F(b)&B(b,c)
- 2. $\forall x, (C(x) \Rightarrow D(a, x))$
- 3. $\exists x, (C(x)\&F(x)\&B(x,y))$
- $4. \ \forall x, \forall y, \ ((C(x)\&F(x)) \Rightarrow (P(y) \Rightarrow D(y,x)))$
- 5. $\forall x, \ (C(x) \Rightarrow \exists y, \ (P(y)\&B(x,y)))$
- $6. \ \neg \exists x, \ (C(x)\&B(x,a))\&\exists x, \ (F(x) \Rightarrow D(a,x)).$

1.3 Sets.

- 1. Find sup A and inf A for $A = \left\{ \frac{p}{p+q}, \ p, q \in \mathbb{N} \right\}$.
- 2. Show that $\sup[0, 2] = \sup(0, 2) = 2$.
- 3. Let $A, B \subset \mathbb{R}$ be nonempty sets. Try to express $\sup(A \cup B)$ and $\sup(A \cap B)$ by $\sup A$ and $\sup B$, if it is possible.

1.4 Math induction.

1. Prove that for all $n \in \mathbb{N}$ it holds that

$$1^{2} + 2^{2} + 3^{2} + \ldots + n^{2} = \frac{n(n+1)(2n+1)}{6}$$

- 2. Prove that six is a divisor of $n^3 + 5n$ for every $n \in \mathbb{N}$.
- 3. Prove that

$$(1+x)^n \ge 1 + nx$$

for every x > -1 and every $n \in \mathbb{N}$.

4. Prove that

 $1 + 2^1 + 2^2 + \ldots + 2^{n-1} = 2^n - 1$

for all $n \in \mathbb{N}$.

5. Prove that 6 is a divisor of $10^n - 4$ for every $n \in \mathbb{N}$.

1.5 Mappings.

- 1. Which of these subsets are mappings?
 - $f = \{ \langle 1, 5 \rangle, \langle 2, 4 \rangle, \langle 1, 3 \rangle \},\$
 - $g = \{ \langle 1, 2 \rangle, \langle 5, 3 \rangle, \langle 10, 1 \rangle \},\$
 - $h = \{\langle 3, 3 \rangle, \langle 4, 3 \rangle, \langle 7, 7 \rangle, \langle 10, 3 \rangle \}.$

If f, g, or h is a mapping, determine its domain and range.

2. Let $A = \{1, 2, 3, 4\}$ and $B = \{2, 5, 8\}$. Consider a mapping $f : A \rightarrow B$ which is given as

 $\{\langle 1,5\rangle,\ \langle 3,2\rangle,\ \langle 2,2\rangle\}.$

Write down Domf, Ranf and decide whether f is injection or surjection. Then let $g: B \to A$ be defined as $g = \{\langle 2, 1 \rangle, \langle 8, 4 \rangle\}$. Determine $g \circ f$.

- 3. Find f^{-1} for a function $f(x) = \frac{x+3}{2x-1}, x \in \mathbb{R} \setminus \left\{\frac{1}{2}\right\}$.
- 4. Show that f(x) = x + 2, $x \in [3, \infty)$ is bounded from below and not from above.

2 Real functions

2.1 Basic properties.

1. Find maximal domain of functions

•
$$f(x) = \sqrt{\frac{x+1}{x-1}}$$
,
• $f(x) = \frac{1}{\sqrt{x^2+5x+4}}$,
• $f(x) = \frac{1}{(\log(\sin x))^2}$.

•
$$f(x) = \frac{\sqrt{x}}{e^x}$$

•
$$f(x) = \frac{1}{\ln x}$$

 $2. \ Decide \ about \ the \ parity \ of \ the \ following \ functions$

•
$$f(x) = \frac{\sin x}{x^3 + x}$$

• $f(x) = \sqrt{x^2 + 1} \cos x$
• $f(x) = \frac{x + 1}{x - 1}$
• $f(x) = x^2 + x^4 + 3$
• $f(x) = x^2 + \sqrt{x^2}$
• $f(x) = x^2 \sin x$

and justify your answer.

3. Find f^{-1} :

$$\begin{array}{ll} (a) \ f: y = 3x + 4 \\ (b) \ f: y = \frac{x}{x-3} \\ (c) \ f: y = x^2 + 8x + 3, \ \mathrm{Dom}f = (-\infty, -4) \end{array} \qquad \begin{array}{ll} (d) \ f: y = 3 + \frac{x}{x+1} \\ (e) \ f: y = x^2 + 1 \\ (f) \ f: y = 4 + \frac{1}{x} \end{array}$$

4. Sketch a graph of a function

$$f(x) = \operatorname{sgn}(\sin x)$$

and decide about monotonicity, periodicity, range, domain, boundedness, and continuity. Here sgn is defined as follows

$$\operatorname{sgn}(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{for } x = 0 \\ -1 & \text{if } x < 0 \end{cases}$$

5. Prove that the function f from the previous exercise is continuous in every point of a set $\mathbb{R} \setminus \{x = k\pi, k \in \mathbb{Z}\}$ and discontinuous everywhere else.

2.2 Polynomials.

- 1. Find all roots of $p(x) = x^2 + 5x + 6$.
- 2. Find all (complex) roots of $p(x) = 2x^2 + 8x + 16$.
- 3. Find all roots of $p(x) = x^3 + 3x^2 10x 24$.
- 4. Find all roots of $p(x) = x^4 4x^3 + 12x^2 48x$.

2.3 Real powers.

- 1. Decide, which of the two numbers is higher
 - $5^{1/4}$, $5^{1/2}$, • $\left(\frac{2}{3}\right)^2$, $\left(\frac{2}{3}\right)^{2.2}$,
 - $(\sqrt{2})^{-1}, (\sqrt{2})^{-0.66}.$

• $f(x) = \sqrt{\frac{x+1}{x-1}}$ • $f(x) = \sqrt{x^2 + 6x + 3} + \sqrt[3]{x+1}$ • $f(x) = 5^{x^2 + \ln x}$ • $f(x) = \sqrt{\ln x} + \frac{1}{\sqrt{|x^2 + 4x + 3|}}$

3

2. Find all x satisfying

$$\sqrt{x - x^2 + 12} < \sqrt{7 - 3x}.$$

2.4 Exponential functions and logarithms.

 $1. \ Solve$

$$\frac{27^{3x-2}}{243} = 81^{3x-7}$$

$$4^x + 2^{x+2} = 5$$

3. Solve

2. Solve

$$\log_4(x^2 - 9) - \log_4(x + 3) = 3.$$

4. Find all real numbers x satisfying

 $e^x < c.$

2.5 Goniometric functions.

- 1. Solve $\sin x = \frac{1}{2}$.
- 2. Solve $4\sin^2 x 4\sin x + 1 = 0$.
- 3. Find all $x \in \mathbb{R}$ satisfying

$$\cos x > -\frac{1}{2}.$$

3 Sequences and their limits

3.1 Basics.

1. Find an explicit formula for a sequence given as

$$a_1 = 1, \quad a_{n+1} = (n+1)a_n$$

and verify your claim.

2. Find an explicit formula for a sequence given as

 $\lim \frac{n^2 + 1}{(1 - n)(n + 2)}$

$$a_1 = \frac{1}{2}, \quad a_{n+1} = \frac{n}{n+1}a_n$$

and verify your claim.

3. Decide about the monotonicity of

$$a_n = \frac{n}{(n^2 + 3)}$$

and verify your claim.

 ${\it 4.} \ Decide \ about \ the \ monotonicity \ of$

$$a_n = \frac{n+1}{n^2}$$

and verify your claim.

3.2 Limits.

 $1. \ Solve$

 $\lim \frac{(n^2+2)^{3/2}}{n-1}$

3. Solve

$$\lim 2 - \frac{2^{n} + 1}{3^{n}}$$
4. Solve

$$\lim \frac{1 - n^{3}}{n + 3}$$
5. Solve

$$\lim (\sqrt{2n} - \sqrt{2n - 1}) \sqrt{n}$$
6. Solve

$$\lim \frac{\sqrt{n} + n^{\frac{1}{3}}}{n^{\frac{1}{2}} - 1}$$
7. Solve

$$\lim \frac{\sqrt{n^{2} + 4n} - n}{n^{\frac{1}{2}}}$$
8. Solve

$$\lim \frac{\sqrt{n^{2} + 4n} - n}{5}$$
8. Solve

$$\lim \frac{(n + 1)^{4}}{(n + \sqrt{n})^{3}}$$
9. Solve

$$\lim \frac{\sqrt{n^{2} + 2n + 2} - n}{\sqrt{n}}$$
10. Solve

$$\lim \frac{\sqrt{n^{2} + 2n + 2} - n}{\sqrt{n}}$$
11. Solve

$$\lim \frac{\sqrt{n^{2} + 2n + 2} - n}{n - 1 + e^{n}}$$
12. Solve

$$\lim \frac{2 + n + 3^{n}}{n - 1 + e^{n}}$$
13. Solve

$$\lim \frac{(n^{2} - 4)}{2^{n} + n^{2} - 1}$$
14. Solve

$$\lim \frac{\sqrt{n} + 2\sqrt{2n} + 5}{4n - 3}$$
15. Solve

$$\lim \frac{\sqrt{n} + 2\sqrt{2n} + 5}{4n - 3}$$
15. Solve

$$\lim \frac{(n + 4)^{8} - (n^{2} + 1)^{4}}{(2n - 4)^{7}}$$
17. Solve

$$\lim \frac{3n^{6} + 4n - 3}{(2n + 3)^{6}}$$

19.	Solve	$\lim \sqrt{n^4 - 5n} - n^2$
20.	Solve	$\lim \frac{(-1)^n (\sqrt{n^2 + 1} - 1)}{n}$
21.	Solve	$\lim \frac{\left(\frac{1}{2}\right)^{n^2} - \left(\frac{1}{3}\right)^{n^2}}{\left(\frac{1}{2}\right)^{n^2+1} - \left(\frac{1}{3}\right)^{n^2+1}}$
22.	Solve	$\left(\frac{1}{2}\right)^{n} - \left(\frac{1}{3}\right)^{n}$ $\lim \left(\frac{2n-1}{2n+1}\right)^{n}$
23.	Solve	$\lim \sqrt{n^2 + 3n} - n$
24.	Solve	$\lim \frac{(2n+1)^2(n-2)^3}{(n+1)^5}$
25.	Solve	$\lim(-1)^n \sqrt{n}(\sqrt{n+2} - \sqrt{n+1})$
26.	Solve	$\lim \frac{\sqrt{n}(2n-4)}{\sqrt{n^3+3n}}$
27.	Solve	$\lim \frac{(2n^2 - 4n + 1)\sqrt{n}}{\sqrt{n^5 + 4n}}$
28.	Solve	$\lim \left(\frac{n}{n-2}\right)^n$
29.	Solve	$\lim \sqrt[3]{n^2}(\sqrt[3]{n} - \sqrt[3]{n-1})$
30.	Solve	$\lim \frac{3^n + n2^n}{4^n}$
31.	Solve	$\lim \frac{n^2 + 1}{(-1 - n)(n + 2)}$
32.	Solve	$\lim \sqrt{n}(\sqrt{2n} - \sqrt{2n-1})$
33.	Solve	$\lim \frac{1-n^3}{n+3}$
34.	Solve	$\lim \sqrt{n^2 + 2n + 2} - n$
35.	Solve	$\lim \frac{(n+1)^4}{(n+\sqrt{n})^3}$

4 Functions II

4.1 Limits.

1. Solve $\lim_{x \to 0} \frac{x^2 - 1}{2x^2 - x - 1}$

$$\lim_{x \to 1} \frac{x^2 - 1}{2x^2 - x - 1}$$

3. Solve

2. Solve

$$\lim_{x \to \infty} \frac{(x+1)(x+2)(x+3)(x+4)(x+5)}{(5x+1)^5}$$

4. Solve

5. Solve

$$\lim_{x \to 4} \frac{\sqrt{1+2x}-3}{\sqrt{x}-2}$$

 $\lim_{x \to 0} \frac{5^x - e^x}{x}$

 $\lim_{x \to 3} x + 2$

 $\lim_{x \to 3} \frac{x^2 - 5x + 6}{x^2 + 3x - 18}$

 $\lim_{x \to +\infty} \frac{1}{2}x^3 - x + 1$

 $\lim_{x \to +\infty} \frac{x+2}{x^2+3}$

 $\lim_{x \to -\infty} \frac{x^4}{x+1}$

 $\lim_{x \to 0} \frac{x^3 + x + 1}{x^2 + x}$

 $\lim_{x \to +\infty} \frac{x^3 + 2x}{x^3 - 1}$

 $\lim_{x \to -\infty} \sqrt{x^2 + 1}$

$$\lim_{x \to \pi} \frac{\sin x}{x - \pi}$$

7. Solve

8. Solve

9. Solve

10. Solve

11. Solve

12. Solve

13. Solve $\lim_{x \to -1} \frac{x^3 - x + 2}{x^2 + 2x + 1}$

14. Solve

$$\lim_{x \to 3} \frac{x^3 - 2x^2 - 2x - 3}{x^2 - 6x + 9}$$

 $\lim_{x \to 4} \frac{x^2 - 18}{x^2 - 8x + 16}$

18. Solve

19. Solve

$$\lim_{x \to -\infty} \frac{x^4 + 4x + 1}{x^3 - x + 1}$$

$$\lim_{x \to 0} x \cot(3x)$$

20. Solve the following limit of sequence

$$\lim\left(1+\frac{1}{n}\right)^n$$

21. Solve

$$\lim_{x \to 0} (x + e^x)^{\frac{1}{x}}$$

22. Solve the following limit of sequence

$$\lim\left(\frac{2+3n}{3n-1}\right)^{2n}$$

 $\lim_{x \to 0} \frac{\sin 3x}{x}$

 $\lim_{x \to 0} \frac{\sin 5x}{\sin 3x}$

 $\lim_{x \to \infty} e^{-x}$

- 23. Solve
- 24. Solve

 $26. \ Solve$

27. Solve

28. Solve

29. Solve

30. Solve

 $\lim_{x \to -\infty} \frac{\sin x}{x}$

$$\lim_{x \to 0} \frac{e^x - e^{-x}}{\sin x}$$

$$\lim_{x \to 0} \frac{\sqrt{1 - \cos x}}{e^{2x} - e^{-2x}}$$

 $\lim_{x \to 0} x^x$

$$\lim_{x \to 1} \frac{\ln x}{e^{x-1} - 1}$$

4.3 Derivatives of higher order. Compute

1.
$$(\cos x)^{(11)}$$
 3. $(e^{2x})^{(10)}$

 2. $(x^{12} + 5x^4)^{(6)}$
 4. $(\log x)^{(12)}$

4.4 Monotonicity. Find intervals where is the given function increasing or decreasing

1.
$$f(x) = \frac{2x-1}{x+1}$$

2. $f(x) = x^3 - 3x^2 - 9x + 1$
3. $f(x) = \frac{x}{x^2+1}$
4. $f(x) = x^2 - \frac{1}{x}$

4.5 Local extremes. Find local extremes of the following functions

1.
$$f(x) = \sqrt{2 - x - x^2}$$

2. $f(x) = x^4 - \frac{4}{3}x^3 - 2x^2 + 4x + 1$
3. $f(x) = e^{x - x^2}$
4. $f(x) = \sin(x^2)$

4.6 Inflexion. Find intervals where is the given function convex or concave. Determine the inflexion points.

1. $f(x) = x^4 - 12x^2 + \sqrt{3}x$. 2. $f(x) = \frac{x}{x+1}$. 3. $f(x) = \frac{x}{\log x}$. 4. $f(x) = x (\log x)^2$.

4.7 Exercises with parameter.

1. Find $a, b \in \mathbb{R}$ such that the point $\langle 1, 3 \rangle$ is a point

of inflexion of $f(x) = ax^3 + bx^2$.

4.8 The course of a function. Examine the course of f:

1.
$$f(x) = 3x - x^3$$
 5. $f(x) = (x - 3)\sqrt{x}$

 2. $f(x) = \frac{e^x}{1+x}$
 6. $f(x) = (x - 4)\sqrt[3]{x}$

 3. $f(x) = \frac{\sin x}{2 + \cos x}$
 7. $f(x) = 3 + \sin x \cos x$

 4. $f(x) = \frac{x^4}{(1+x)^3}$
 8. $f(x) = \arctan\left(\frac{\sqrt{3}}{x^2}\right)$

4.9 l'Hospital rule. Use the l'Hospital rule to solve

 $1. \lim_{x \to \infty} \frac{x^2}{e^x} \qquad \qquad 4. \lim_{x \to 1_-} \log x \log(1-x)$ $2. \lim_{x \to 0_+} x \log x \qquad \qquad 5. \lim_{x \to 0} \frac{\tan x - x}{x - \sin x}$ $3. \lim_{x \to \pi/2} \frac{\tan(3x)}{\tan x} \qquad \qquad 6. \lim_{x \to 0} \frac{\arctan x}{x^2 - x}$

7.
$$\lim_{x \to 1} \frac{x^2 + 2x}{xe^x}$$
 8. $\lim_{x \to 0} \frac{x^3}{(1 - \cos x) \sin x}$

4.10 Approximation. Use the second-order Taylor polynomial to find an approximate value of

1. $\sqrt[3]{30}$ 2. log 1.2

5 Integrals

5.1 Basics.

1. $\int x^3 - 3\sqrt{x} \, dx$ 2. $\int \left(\frac{1-x}{x}\right)^2 \, dx$ 3. $\int \frac{x^2}{1+x^2} \, dx$ 4. $\int \frac{2^{x+1}-5^{x-1}}{10^x} \, dx$ 5. $\int \frac{e^{3x}+1}{e^x+1} \, dx$ 6. $\int \left(1-\frac{1}{x^2}\right) \sqrt{x\sqrt{x}} \, dx$

5.2 Linear substitution. Use a substitution t = ax + b to solve

 1. $\int \left(\frac{x}{2} - 3\right)^6 dx$ 5. $\int \sqrt[3]{1 - 3x} dx$

 2. $\int 2\sin(3 - 2x) dx$ 6. $\int \frac{2}{2x^2 + 4x + 3} dx$

 3. $\int \frac{1}{x^2 + 4} dx$ 7. $\int \tan(2x) dx$

 4. $\int \frac{3}{2x - 4} dx$ 8. $\int e^{-x} + e^{-2x} dx$

5.3 Substitution. Use an appropriate substitution to solve the following integrals.

 1. $\int \frac{4x}{2x^2+1} dx$ 5. $\int \frac{\sin x \cos^3 x}{1+\cos^2 x} dx$

 2. $\int \frac{x^3}{\sqrt{1+x^2}} dx$ 6. $\int \cos x \tan^3 x dx$

 3. $\int \frac{1}{\sin^3 x} dx$ 7. $\int \frac{e^x}{1+e^{2x}} dx$

 4. $\int \frac{\sqrt{1+\log x}}{x\log x} dx$ 8. $\int x^2 \sqrt[3]{1+x^3} dx$

5.4 Integration by parts. Use the integration by parts method to solve

1. $\int x \cos x dx$ 5. $\int (x^2 + 1) \sin x dx$ 2. $\int (x+1)e^{-x} dx$ 6. $\int \sin^2 x dx$ 3. $\int \log x dx$ 7. $\int x^2 \sin 2x dx$ 4. $\int e^x \cos x dx$ 8. $\int \sin 2x \cos x dx$

5.5 Rational functions. Solve

1.
$$\int \frac{2x^4 + 5x^2 - 2}{2x^3 - x - 1} \, dx$$

2. $\int \frac{2x^3}{x + 1} \, dx$
3. $\int \frac{x^3 + 2x^2 + x - 1}{x^2 - x + 1} \, dx$
4. $\int \frac{7x^2 + 7x - 6}{x^2 - 3x} \, dx$
5. $\int \frac{x}{(x + 1)(x + 2)(x - 3)} \, dx$
6. $\int \frac{3x + 6}{x^2 + 6x + 13} \, dx$

5.6 Mixture. Solve (using an appropriate method)

$1. \int x^5 e^{x^3} \mathrm{d}x$	4. $\int \frac{\sin x \cos x}{(1 - \cos x)(2 + \cos x)} \mathrm{d}x$
2. $\int \arctan x \mathrm{d}x$	5. $\int \arctan \sqrt{x} \mathrm{d}x$
$3. \int 2x \sin(x^2) \mathrm{d}x$	$6. \int \frac{1}{\sin x \cos^2 x} \mathrm{d}x$

5.7 Riemann's integral. Compute the following Riemann integrals by definition

1.
$$\int_{-1}^{1} x^2 dx$$

5.8 Newton's integral. Compute

 $\begin{aligned} 1. \ \int_0^4 \frac{x^2}{3} + x + 1 \ dx & 5. \ \int_{-2}^5 \frac{1}{3x+5} \ dx \\ 2. \ \int_0^{-\pi} \frac{1}{2} \sin x - \cos x \ dx & 6. \ \int_0^1 \frac{\arctan x}{x^2+1} \ dx \\ 3. \ \int_2^5 x^2 e^x \ dx & 7. \ \int_{\pi/4}^{\pi/2} \cos^2 x \ dx \\ 4. \ \int_1^3 x \sqrt{x^2 + 4} \ dx & 8. \ \int_{\pi/2}^{3\pi/2} \sin^4 x \cos x \ dx \end{aligned}$

5.9 Areas.

- 1. Compute the area of a triangle M whose sides are on lines y = 3 - x, y = 2x and $y = \frac{1}{2}x$.
- 2. Compute the area of $M = \{ \langle x, y \rangle \in \mathbb{R}^2, x^2 + 2x 8 < y < x 2 \}.$

2. $\int_0^1 a^x \, dx, \, a > 1$ given.

- 3. Compute the area of $M = \{\langle x, y \rangle \in \mathbb{R}^2, x \in (0, \frac{7}{4}\pi), \sin x < y < \cos x\}.$
- 4. Compute the area of $M = \{\langle x, y \rangle \in \mathbb{R}^2, x^2 + y^2 < R^2\}$ where R > 0 is given. Hint: use substitution $x = R \sin t$.

5.10 Curve length. Compute the length of the graph of a given function f:

1. $f(x) = x^{3/2}, x \in (0, 1)$

2.
$$f(x) = \frac{e^x + e^{-x}}{2}, x \in (-1, 1)$$

5.11 Volumes.

1. Compute the volume of the solid arising by the rotation of

$$M = \{ \langle x, y \rangle \in \mathbb{R}^2, \ 0 \le y < x, x \in (0, 2) \}$$

around the axis y.

- 5.12 Improper integrals. Decide about the convergence of the following integrals
 - 1. $\int_0^\infty \frac{x^2}{x^4 x^2 + 1} \, \mathrm{d}x$ 2. $\int_{-1}^1 \frac{\sin x}{(x^2 - 1)(x - 1)} \, \mathrm{d}x$

6 Ordinary differential equations

6.1 General questions.

- 1. Show that $y(x) = e^x x$ is a solution to $y' + y^2 = e^{2x} + (1 - 2x)e^x + x^2 - 1.$
- 2. Show that $y(x) = x^2 x^{-1}$ is a solutions to $x^2y'' = 2y$

on an interval $(0,\infty)$.

3. Decide, whether is the following equation linear or nonlinear and determine its order

$$5y'' + 4y' + 9y = 2\cos(3x)$$

4. Decide, whether is the following equation linear or nonlinear and determine its order

$$y' = \frac{y(2-3x)}{x(1-3y)}$$

2. Compute the volume of the solid arising by the rotation of

$$M = \{ \langle x, y \rangle \in \mathbb{R}^2, \ x^2 < y < 2 - x^2 \}$$

around the axis x.

3. $f(x) = \log x, x \in (\sqrt{3}, \sqrt{8})$

4. $f(x) = \log(\sin x), x \in (\frac{\pi}{2}, \frac{2\pi}{8})$

$$3. \int_0^\infty \frac{1}{\sqrt{x^3 + x}} \, \mathrm{d}x$$
$$4. \int_0^\infty \frac{\arctan x}{\sqrt{x^3}} \, \mathrm{d}x$$

Can be the equation solved by the separation of variables?

5. Decide, whether is the following equation linear or nonlinear and determine its order

$$y(1+(y')^2) = 5.$$

Can be the equation solved by the method of separation of variables?

6. Determine the right hand side and the appropriate homogeneous problem of the following equation

$$y'' + 3y' + 7 = 0$$

6.2 Separation of variables. Find all solutions to

1.
$$y' = 1 - y^2$$

2. $y' = \sqrt{1 - y^2}$
3. $y' = y \log y \sin y$
4. $y' = \frac{2y^2 - xy}{x^2}$

6.3 Linear equations of the first order. Find all solutions to

1.
$$x^2y' - xy = 1$$

2. $xy' + (1+x)y = e^x$
3. $y' + \frac{x}{1+x^2}y = \frac{1}{x(x^2+1)}$

6.4 Linear equations with constant coefficients. Find all solutions to

1.
$$y^{(4)} + 18y'' + 81y = 0$$

2.
$$y''' - 9y'' = 0$$

- 3. y''' + 3y'' + 3y' + y = 0
- 4. y''+6y'+9y=0, then find the particular solution fulfilling y(0) = 2, y'(0) = 1
- 5. y'' + 2y' + 5y = 0, Then find the particular solution fulfilling y(0) = 0, y'(0) = 1

6.5 Applications.

1. If P(t) is the amount of dollars in savings bank account that pazs a yearly interest rate of r%compounded continuously, then

$$P' = \frac{r}{100}P,$$

where t is in years. Assume r = 5 and P(0) =1000 USD.

- (a) How much will be in the account after two years?
- (b) When will the account reach 4000 USD?
- (c) If 1000 USD is added every 12 months, how much will be in the account after three and half years?
- 2. The logistic equation for the population p at time t of a certain species is given by

$$p' = p(2000 - p).$$

6.6 Difference equations – linear case. Find all sequences
$$y_n$$
 solving

1. $y_{n+3} + y_{n+2} - 8y_{n+1} - 12y_n = 0$

2.
$$y_{n+2} - 5y_{n+1} + 6y_n = 1 + n$$

6.7 Difference equations – recurrence relations. Find the exact formula of a sequence a_n which is given as

1. $a_{n+1} = a_n + \frac{1}{(n+2)(n+1)}, a_1 = \frac{1}{2}$ 2. $a_{n+1} = \frac{n}{n+2}a_n, a_1 = \frac{1}{2}$

7 Series

7.1 Particular values. Try to evaluate the following sums

3.
$$y' = y \log y \sin x$$

4. $y' = \frac{2y^2 - xy}{x^2}$

fulfilling
$$y(0) = 2$$

5. $y' - \frac{1}{x}y = x^2 e^x$

4. $y' - 2y = e^{4x}$, then find the particular solution

6.
$$y'' - y' + y = \cos x - \sin x$$

7. $y''' + y'' = x^3 + x^2$
8. $y''' + y'' + y' + y = x^3 + x^2 + x + 1$
9. $y''' - 3y'' + 4y = e^{2x}$
10. $y'' - 2y' + y = \frac{e^x}{x}$
11. $y'' - y' = \frac{x+1}{x^2}$

- (a) If the initial population is 3000, what can you say about the limiting population $\lim_{t\to\infty} p(t)$?
- (b) Can a population of 1000 ever decline to 500?
- (c) Can a population of 1000 ever increase to 3000?
- 3. In 1790 the population of the United States was 3.93 million, and in 1890 it was 62.98 million. Using the Malthusian model (p'(t) = kp(t)), estimate the U.S. population as a function of time.
- 4. Use the logistic model (p'(t) = kp(t)(K p(t)))to estimate the U.S. population if you now (in addition) that in 1840 there was a population of 17.07 million.

3. $y_{n+2} - 5y_{n+1} + 4y_n = 4^n - n^2$

1.
$$\sum_{n=4}^{\infty} \frac{4}{3^n}$$

2. $\sum_{n=1}^{\infty} \frac{2^{n+1}+5^{n-1}}{10^n}$
3. $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$
4. $\sum_{n=1}^{\infty} \frac{2n+1}{n^2(n+1)^2}$

7.2 Convergence. Decide about the convergence of the following series