Extremes

Václav Mácha
University of Chemistry and Technology

Extremes: 1D remainder

Definition

Let $f: \mathbb{R} \rightarrow \mathbb{R}$. We say that f attains its local maximum (resp. minimum) at a point x_{0} if there exists $\varepsilon>0$ such that $f\left(x_{0}\right)>f(x)$ (resp.
$\left.f\left(x_{0}\right)<f(x)\right)$ for every $x \in\left(x_{0}-\varepsilon, x_{0}+\varepsilon\right) \backslash\left\{x_{0}\right\}$.

Definition

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be of class C^{1}. A stationary point of f is a point x_{0} such that $f^{\prime}\left(x_{0}\right)=0$.

Lemma

Lef $f \mathbb{R} \rightarrow \mathbb{R}$ be of class C^{2} and let x_{0} be its stationary points. Then if $f^{\prime \prime}\left(x_{0}\right)>0, f$ attains its local minimum at x_{0} and if $f^{\prime \prime}\left(x_{0}\right)<0, f$ attains its local maximum at x_{0}.

Extremes: 1D remainder

Definition

Let $f: \mathbb{R} \rightarrow \mathbb{R}$. We say that f attains its local maximum (resp. minimum) at a point x_{0} if there exists $\varepsilon>0$ such that $f\left(x_{0}\right)>f(x)$ (resp. $\left.f\left(x_{0}\right)<f(x)\right)$ for every $x \in\left(x_{0}-\varepsilon, x_{0}+\varepsilon\right) \backslash\left\{x_{0}\right\}$.

Definition

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be of class C^{1}. A stationary point of f is a point x_{0} such that $f^{\prime}\left(x_{0}\right)=0$.

Lemma

Lef $f \mathbb{R} \rightarrow \mathbb{R}$ be of class C^{2} and let x_{0} be its stationary points. Then if $f^{\prime \prime}\left(x_{0}\right)>0, f$ attains its local minimum at x_{0} and if $f^{\prime \prime}\left(x_{0}\right)<0, f$ attains its local maximum at x_{0}.

Example

- Find the local extrema of $f(x)=\sin x+\frac{1}{2} x$.

Definition

A function $f: \mathbb{R} \rightarrow \mathbb{R}$ attains its (global) maximum at x_{0} if $f\left(x_{0}\right) \geq f(x)$ for all $x \in \operatorname{Dom} f$. A(global) minimum is defined respectively.

Lemma

Let f be a continuous function defined on $[a, b] \subset \mathbb{R}$. Then f attains its maximum and minimum on $[a, b]$.

Example

- Find the global extrema of $f(x)=x^{2} e^{x}$.
- Find the global extrema of $f(x)=x^{3}-12 x$ on $[-3,5]$

Monopoly competition: The total profit of a company is given as $T P=T R-T C$, where $T R$ stands for total revenues and $T C$ stands for total costs. Let Q stands for the quantity of produced goods. Naturally, $T R=P * Q$ where P is the market price of the product. Assume $T C=500000+400 Q+0.04 Q^{2}$ (fix costs, variable costs, \ldots).

Monopoly competition: The total profit of a company is given as $T P=T R-T C$, where $T R$ stands for total revenues and $T C$ stands for total costs. Let Q stands for the quantity of produced goods. Naturally, $T R=P * Q$ where P is the market price of the product. Assume $T C=500000+400 Q+0.04 Q^{2}$ (fix costs, variable costs, \ldots). Monopoly competition - the price decreases as the production increases, say $P=10000-0.1 Q$
Aim: Maximize the total profit.

Monopoly competition: The total profit of a company is given as $T P=T R-T C$, where $T R$ stands for total revenues and $T C$ stands for total costs. Let Q stands for the quantity of produced goods. Naturally, $T R=P * Q$ where P is the market price of the product. Assume $T C=500000+400 Q+0.04 Q^{2}$ (fix costs, variable costs, \ldots). Monopoly competition - the price decreases as the production increases, say $P=10000-0.1 Q$
Aim: Maximize the total profit.
Monopoly competition: $M R:=T R^{\prime}(Q)<P(Q)$

Extremes, multi-D reminder

Definition

Let $f: M \subset \mathbb{R}^{n} \mapsto \mathbb{R}$. We say that f attains a local maximum at a point $x_{0} \in M^{0}$ if there is $r>0$ such that $f\left(x_{0}\right) \geq f(x)$ for all $(x) \in B_{r}\left(x_{0}\right)$. A Local minimum is defined analogously.

Definition

Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be of class C^{1}. A stationary point of f is a point x_{0} such that $\nabla f\left(x_{0}\right)=0$.

Lemma

Let $f \in C^{2}$ and let x_{0} be its stationary point. Then

- if $\nabla^{2} f\left(x_{0}\right)$ is positive-definite, then f has a local minimum at x_{0},
- if $\nabla^{2} f\left(x_{0}\right)$ is negative-definite, then f has a local maximum at x_{0},
- if $\nabla^{2} f\left(x_{0}\right)$ is indefinite, then there is no extreme at x_{0},
- otherwise, we do not know anything.

Example

- Examine the local extrema of

$$
f(x, y)=y^{3}+x^{2}-6 x y+3 x+6 y-7
$$

- Examine the local extrema of

$$
f(x, y)=x^{2} y^{2}-x^{2}-y^{2}
$$

Definition

A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ attains its (global) maximum at x_{0} if $f\left(x_{0}\right) \geq f(x)$ for all $x \in \operatorname{Dom} f$. A(global) minimum is defined respectively.

Example

- A company manufactures two products A and B that sell for $\$ 10$ and $\$ 9$ per unit respectively. The cost of producing x units of A and y units of B is

$$
400+2 x+3 y+0.01\left(3 x^{2}+x y+3 y^{2}\right)
$$

Find the values of x and y that maximize company's profit.

Definition

A set $M \subset \mathbb{R}^{n}$ is convex if for every $x, y \in M$ and every $\lambda \in(0,1)$ it holds that

$$
\lambda x+(1-\lambda) y \in M
$$

Definition

Let Dom $f \subset \mathbb{R}^{n}$ be a convex set. We say that f is convex if

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)
$$

for all $x, y \in \operatorname{Dom} f$ and $\lambda \in(0,1)$. The function is strictly convex, if

$$
f(\lambda x+(1-\lambda) y)<\lambda f(x)+(1-\lambda) f(y)
$$

The function f is (strictly) concave if $-f$ is (strictly) convex.

Several observation

- The second gradient is positive (negative) definite - the function is strictly convex (concave).
- The function is convex on its domain - every local minimum is a global minimum.
- The function is concave on its domain - every local maximum is a global maximum.

Global extremes with respect to a set

Lemma

Let $M \subset \mathbb{R}^{n}$ and let $f: M \rightarrow \mathbb{R}$. Then f attains its minimum on M at point $\left(x_{0}, y_{0}\right) \in \mathbb{M}$ if

$$
\forall(x, y) \in M, f\left(x_{0}, y_{0}\right) \leq f(x, y)
$$

Similarly, f attains its maximum on M at point $\left(x_{0}, y_{0}\right) \in \mathbb{M}$ if

$$
\forall(x, y) \in M, f\left(x_{0}, y_{0}\right) \geq f(x, y)
$$

Global extremes with respect to a set

Lemma

Let $M \subset \mathbb{R}^{n}$ and let $f: M \rightarrow \mathbb{R}$. Then f attains its minimum on M at point $\left(x_{0}, y_{0}\right) \in \mathbb{M}$ if

$$
\forall(x, y) \in M, f\left(x_{0}, y_{0}\right) \leq f(x, y)
$$

Similarly, f attains its maximum on M at point $\left(x_{0}, y_{0}\right) \in \mathbb{M}$ if

$$
\forall(x, y) \in M, f\left(x_{0}, y_{0}\right) \geq f(x, y)
$$

Lemma

Let $M \subset \mathbb{R}^{n}$ be a bounded and closed set and let $f: M \rightarrow \mathbb{R}$ be a continuous function. Then f attains its minimum and maximum on M.

Examples

- Find the maximum and minimum of

$$
f(x, y)=x^{2}+y^{2}-2 x y
$$

on the set $M=\left\{(x, y) \in \mathbb{R}^{2}, x \in(-1,3), y \in(0,2)\right\}$.

Examples

- Find the maximum and minimum of

$$
f(x, y)=x^{2}+y^{2}-2 x y
$$

on the set $M=\left\{(x, y) \in \mathbb{R}^{2}, x \in(-1,3), y \in(0,2)\right\}$.

- Solve: To reduce shipping distances between the manufacturing facilities and a major consumer, a Korean computer brand, Intel Corp. intends to start production of a new controlling chip for Pentium III microprocessors at their two Asian plants. The cost of producing x chips at Chiangmai (Thailand) is

$$
C_{1}=-0.002 x^{2}+50 x+500
$$

and the cost of producing y chips at Kuala-Lumpur (Malaysia) is

$$
C_{2}=0.005 y^{2}+4 y+275 .
$$

The Korean computer manufacturer buys them for $\$ 150$ per chip. Find the quantity that should be produced at each Asian location to maximize the profit if the maximum delivered amount is 50000 and the factory in Chiangmai is able to produce at most 20000 chips.

- Find the maximum and minimum of

$$
f(x, y)=\left(x^{2}+y\right) e^{y}
$$

on the set

$$
M=\left\{(x, y) \in \mathbb{R}^{2}, y \geq \frac{1}{3} x, y \leq 3 x, y \leq 5-x\right\}
$$

- Find the extreme values of

$$
f(x, y)=2 x^{2}+3 y^{2}-4 x-5
$$

on the region described by the inequality

$$
x^{2}+y^{2}=16
$$

Theorem (The Lagrange multipliers)

Let $f: \operatorname{Dom} f \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a C^{1} function defined on a neighborhood of

$$
M=\left\{x \in \mathbb{R}^{n}, g(x)=0\right\}
$$

where g is a C^{1} function. If there is an extreme of f with respect to the set M at $x_{0} \in \mathbb{M}$, then there exists $\lambda \in \mathbb{R}$ such that

$$
\nabla f\left(x_{0}\right)+\lambda \nabla g\left(x_{0}\right)=0
$$

or $\nabla g\left(x_{0}\right)=0$.

Exercises

- Find extremes of

$$
f(x, y)=x^{2}+y^{2}-12 x-16 y
$$

on

$$
M=\left\{(x, y) \in \mathbb{R}^{2}, x^{2}+y^{2} \leq 25, x \geq 0\right\}
$$

- Find the maximum and minimum values of

$$
f(x, y, z)=y^{2}-10 z
$$

subject to the constraint

$$
x^{2}+y^{2}+z^{2}=36
$$

Theorem (The Lagrange multipliers - two constraints)

Let $n \geq 3, f: \operatorname{Dom} f \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a C^{1} function defined on a neighborhood of

$$
M=\left\{x \in \mathbb{R}^{n}, g(x)=0, h(x)=0\right\}
$$

where $g, h: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are C^{1} functions. If there is an extreme of f with respect to the set M at x_{0}, then there exists $\lambda, \mu \in \mathbb{R}$ such that

$$
\nabla f\left(x_{0}\right)+\lambda \nabla g\left(x_{0}\right)+\mu \nabla h\left(x_{0}\right)=0,
$$

or $\nabla g\left(x_{0}\right)$ and $\nabla h\left(x_{0}\right)$ are linearly dependent.

Theorem (The Lagrange multipliers - two constraints)

Let $n \geq 3, f: \operatorname{Dom} f \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a C^{1} function defined on a neighborhood of

$$
M=\left\{x \in \mathbb{R}^{n}, g(x)=0, h(x)=0\right\}
$$

where $g, h: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are C^{1} functions. If there is an extreme of f with respect to the set M at x_{0}, then there exists $\lambda, \mu \in \mathbb{R}$ such that

$$
\nabla f\left(x_{0}\right)+\lambda \nabla g\left(x_{0}\right)+\mu \nabla h\left(x_{0}\right)=0
$$

or $\nabla g\left(x_{0}\right)$ and $\nabla h\left(x_{0}\right)$ are linearly dependent.

Example

- Find the maximum and minimum values of

$$
f(x, y, z)=3 x^{2}+y
$$

subject to the constraints

$$
4 x-3 v=9 \quad \text { Functions } \quad \text { and } x^{2}+z^{2}=9
$$

Another exercise

■ Find the maximum and the minimum of

$$
f(x, y, z)=x y+x z+y z
$$

on the set

$$
M=\left\{(x, y, z) \in \mathbb{R}^{3}, x^{2}+y^{2}+z^{2} \leq 2, z \leq 1\right\}
$$

Tricks and traps

■ Find the maximum and minimum of $f(x, y)=x+y$ on $M=\left\{(x, y) \in \mathbb{R}^{2}, x^{3}+y^{3}-2 x y=0, x \geq 0, y \geq 0\right\}$.

- Find the maximum and minimum of $f(x, y)=-y+x z$ on $M=\left\{(x, y, z) \in \mathbb{R}^{3}, x^{2}+y^{2}+z^{2}=1, x^{2}+y^{2}=1\right\}$.
- Find the maximum and minimum of $f(x, y)=x^{2}+y^{2}$ on $M=\left\{(x, y) \in \mathbb{R}^{2}, \frac{x}{2}+\frac{y}{3}=1\right\}$.

Applications

- Suppose you are running a factory producing some sort of widget that requires steel as a raw material. Your costs are predominantly human labor, which is $\$ 20$ per hour for your worker, and the steel itself, which runs for $\$ 170$ per ton. Suppose your revenue R is loosely modeled by the following equation

$$
R(h, s)=200 h^{2 / 3} s^{1 / 3}
$$

where h represents hours of labor and s represents tons of steel. If your budget is $\$ 20000$, what is the maximum possible revenue?

- The bottom of a rectangular box costs twice as much per unit area as the sides and top. Find the shape for a given volume that will minimize the cost.

