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Remainder 1D

Extremes: 1D remainder

Definition

Let f : R → R. We say that f attains its local maximum (resp. minimum)
at a point x0 if there exists ε > 0 such that f (x0) > f (x) (resp.
f (x0) < f (x)) for every x ∈ (x0 − ε, x0 + ε) \ {x0}.

Definition

Let f : R → R be of class C 1. A stationary point of f is a point x0 such
that f ′(x0) = 0.

Lemma

Lef f R → R be of class C 2 and let x0 be its stationary points. Then if
f ′′(x0) > 0, f attains its local minimum at x0 and if f ′′(x0) < 0, f attains
its local maximum at x0.

Example

Find the local extrema of f (x) = sin x + 1
2x .
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Remainder 1D

Definition

A function f : R → R attains its (global) maximum at x0 if f (x0) ≥ f (x)
for all x ∈ Dom f . A(global) minimum is defined respectively.

Lemma

Let f be a continuous function defined on [a, b] ⊂ R. Then f attains its
maximum and minimum on [a, b].

Example

Find the global extrema of f (x) = x2ex .

Find the global extrema of f (x) = x3 − 12x on [−3, 5]
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Remainder 1D

Monopoly competition: The total profit of a company is given as
TP = TR − TC , where TR stands for total revenues and TC stands for
total costs. Let Q stands for the quantity of produced goods. Naturally,
TR = P ∗ Q where P is the market price of the product.
Assume TC = 500 000 + 400Q + 0.04Q2 (fix costs, variable costs, . . . ).

Monopoly competition – the price decreases as the production increases,
say P = 10 000− 0.1Q
Aim: Maximize the total profit.
Monopoly competition: MR := TR ′(Q) < P(Q)
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Remainder multi-D

Extremes, multi-D reminder

Definition

Let f : M ⊂ Rn 7→ R. We say that f attains a local maximum at a point
x0 ∈ M0 if there is r > 0 such that f (x0) ≥ f (x) for all (x) ∈ Br (x0). A
Local minimum is defined analogously.

Definition

Let f : Rd → R be of class C 1. A stationary point of f is a point x0 such
that ∇f (x0) = 0.

Lemma

Let f ∈ C 2 and let x0 be its stationary point. Then

if ∇2f (x0) is positive-definite, then f has a local minimum at x0,

if ∇2f (x0) is negative-definite, then f has a local maximum at x0,

if ∇2f (x0) is indefinite, then there is no extreme at x0,

otherwise, we do not know anything.
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Remainder multi-D

Example

Examine the local extrema of

f (x , y) = y3 + x2 − 6xy + 3x + 6y − 7

Examine the local extrema of

f (x , y) = x2y2 − x2 − y2
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Remainder multi-D

Definition

A function f : Rn → R attains its (global) maximum at x0 if f (x0) ≥ f (x)
for all x ∈ Dom f . A(global) minimum is defined respectively.

Example

A company manufactures two products A and B that sell for $10 and
$9 per unit respectively. The cost of producing x units of A and y
units of B is

400 + 2x + 3y + 0.01(3x2 + xy + 3y2).

Find the values of x and y that maximize company’s profit.
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Remainder multi-D

Definition

A set M ⊂ Rn is convex if for every x , y ∈ M and every λ ∈ (0, 1) it holds
that

λx + (1− λ)y ∈ M.

Definition

Let Dom f ⊂ Rn be a convex set. We say that f is convex if

f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y)

for all x , y ∈ Dom f and λ ∈ (0, 1). The function is strictly convex, if

f (λx + (1− λ)y) < λf (x) + (1− λ)f (y).

The function f is (strictly) concave if −f is (strictly) convex.
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Remainder multi-D

Several observation

The second gradient is positive (negative) definite – the function is
strictly convex (concave).

The function is convex on its domain – every local minimum is a
global minimum.

The function is concave on its domain – every local maximum is a
global maximum.
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Extremes subject to a constraint

Global extremes with respect to a set

Lemma

Let M ⊂ Rn and let f : M → R. Then f attains its minimum on M at
point (x0, y0) ∈ M if

∀(x , y) ∈ M, f (x0, y0) ≤ f (x , y).

Similarly, f attains its maximum on M at point (x0, y0) ∈ M if

∀(x , y) ∈ M, f (x0, y0) ≥ f (x , y).

Lemma

Let M ⊂ Rn be a bounded and closed set and let f : M → R be a
continuous function. Then f attains its minimum and maximum on M.
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Extremes subject to a constraint

Examples

Find the maximum and minimum of

f (x , y) = x2 + y2 − 2xy

on the set M = {(x , y) ∈ R2, x ∈ (−1, 3), y ∈ (0, 2)}.

Solve: To reduce shipping distances between the manufacturing
facilities and a major consumer, a Korean computer brand, Intel Corp.
intends to start production of a new controlling chip for Pentium III
microprocessors at their two Asian plants. The cost of producing x
chips at Chiangmai (Thailand) is

C1 = −0.002x2 + 50x + 500

and the cost of producing y chips at Kuala-Lumpur (Malaysia) is

C2 = 0.005y2 + 4y + 275.

The Korean computer manufacturer buys them for $150 per chip.
Find the quantity that should be produced at each Asian location to
maximize the profit if the maximum delivered amount is 50 000 and
the factory in Chiangmai is able to produce at most 20 000 chips.
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Extremes subject to a constraint

Find the maximum and minimum of

f (x , y) = (x2 + y)ey

on the set

M = {(x , y) ∈ R2, y ≥ 1

3
x , y ≤ 3x , y ≤ 5− x}.

Find the extreme values of

f (x , y) = 2x2 + 3y2 − 4x − 5

on the region described by the inequality

x2 + y2 = 16.
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Extremes subject to a constraint

Theorem (The Lagrange multipliers)

Let f : Dom f ⊂ Rn → Rn be a C 1 function defined on a neighborhood of

M = {x ∈ Rn, g(x) = 0}

where g is a C 1 function. If there is an extreme of f with respect to the
set M at x0 ∈ M, then there exists λ ∈ R such that

∇f (x0) + λ∇g(x0) = 0,

or ∇g(x0) = 0.
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Extremes subject to a constraint

Exercises

Find extremes of

f (x , y) = x2 + y2 − 12x − 16y

on
M = {(x , y) ∈ R2, x2 + y2 ≤ 25, x ≥ 0}.

Find the maximum and minimum values of

f (x , y , z) = y2 − 10z

subject to the constraint

x2 + y2 + z2 = 36.
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Extremes subject to a constraint

Theorem (The Lagrange multipliers - two constraints)

Let n ≥ 3, f : Dom f ⊂ Rn → Rn be a C 1 function defined on a
neighborhood of

M = {x ∈ Rn, g(x) = 0, h(x) = 0}

where g , h : Rn → R are C 1 functions. If there is an extreme of f with
respect to the set M at x0, then there exists λ, µ ∈ R such that

∇f (x0) + λ∇g(x0) + µ∇h(x0) = 0,

or ∇g(x0) and ∇h(x0) are linearly dependent.

Example

Find the maximum and minimum values of

f (x , y , z) = 3x2 + y

subject to the constraints

4x − 3y = 9 and x2 + z2 = 9.
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Extremes subject to a constraint

Another exercise

Find the maximum and the minimum of

f (x , y , z) = xy + xz + yz

on the set

M = {(x , y , z) ∈ R3, x2 + y2 + z2 ≤ 2, z ≤ 1}.
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Extremes subject to a constraint

Tricks and traps

Find the maximum and minimum of f (x , y) = x + y on
M =

{
(x , y) ∈ R2, x3 + y3 − 2xy = 0, x ≥ 0, y ≥ 0

}
.

Find the maximum and minimum of f (x , y) = −y + xz on
M =

{
(x , y , z) ∈ R3, x2 + y2 + z2 = 1, x2 + y2 = 1

}
.

Find the maximum and minimum of f (x , y) = x2 + y2 on
M =

{
(x , y) ∈ R2, x

2 + y
3 = 1

}
.
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Extremes subject to a constraint applications

Applications

Suppose you are running a factory producing some sort of widget that
requires steel as a raw material. Your costs are predominantly human
labor, which is $20 per hour for your worker, and the steel itself,
which runs for $170 per ton. Suppose your revenue R is loosely
modeled by the following equation

R(h, s) = 200h2/3s1/3

where h represents hours of labor and s represents tons of steel. If
your budget is $20 000, what is the maximum possible revenue?

The bottom of a rectangular box costs twice as much per unit area as
the sides and top. Find the shape for a given volume that will
minimize the cost.
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