1. Find all solutions to the system

$$
\begin{array}{r}
x+y+z+t=4 \\
2 x+z=1 \\
-z+3 t=7 \\
x-y-z+2 t=5
\end{array}
$$

2. Let a function $f(x, y)=2 x^{2}+2 x y+y^{2}$ be defined on a set

$$
M=\left\{(x, y) \in \mathbb{R}^{2}, x^{2}+y^{2} \leq 25, x-y \geq 0\right\}
$$

(a) Sketch the set $M$.
(b) Is there a point where $f$ attains maximum (resp. minimum) on $M$ ? Justify your answer.
(c) Find the points where the maximum and minimum are attached. Evaluate the function at these points.
3. Consider a system of ODE

$$
\mathbf{x}^{\prime}(t)=\left(\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 0 \\
2 & 1 & 2
\end{array}\right) \mathbf{x}(t)
$$

(a) Find all solutions to the given system.
(b) Find a solution which satisfies $\mathbf{x}(0)=\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right)$.
4. Consider a vector field

$$
F(x, y)=\left(2 x^{3} y^{4}+x, 2 x^{4} y^{3}+y\right) .
$$

(a) Write a definition of a potential of a vector field.
(b) Determine whether the given field $F$ has a potential or not. Justify your answer.
(c) If $F$ has a potential, find it.

