Points: /25

1. Find the maximum and the minimum of

 $M = \{(x, y) \in \mathbb{R}^2, \ -1 \le x \le 1, \ -1 \le y \le 1\}.$

Points: /12

2. Find the maximum and the minimum of $f(x, y) = x + y^2$ subjected to the constraint

$$x^2 + y^2 = 4.$$

 $f(x,y) = x^2 + y^2$

Points: /8

3. Compute

on a rectangle

$$\int \left(2x + \frac{1}{x}\right)^2 \sqrt{x} \, \mathrm{d}x.$$

Points: /5

	Points:	/25
1. Find the maximum and the minimum of $f(x, y) = x^2 - y^2$		
on a rectangle $M = \{(x,y) \in \mathbb{R}^2, \ -1 \le x \le 1, \ -1 \le y \le 1\}$	$y \leq 1$.	
	Points:	/12
2. Find the maximum and the minimum of $f(x,y) = 81x^2 + y^2$		
on the eclipse $4x^2 + y^2 = 9.$		
	Points:	/8
3. Compute $\int \frac{x^3 + x + 1}{x^2 + 1} \mathrm{d}x.$		

Points: /5