1 Linear algebra

1.1 Vectors

1. Let $u=(-1,5), v=(2.7,3.8), w=(4.2,-6)$. Compute $u+v, u-v, v-u, v-w, u+2 w, 3 u-v, u+v+w$, $3 u-2 v-5 w, \frac{1}{2} w+\frac{3}{4} v-\frac{5}{2} u$.
2. Are vectors

$$
\begin{aligned}
v_{1} & =(1,1,1,2) \\
v_{2} & =(1,2,-1,1) \\
v_{3} & =(0,1,1,2)
\end{aligned}
$$

linearly independent?
3. Check if the vector $u=(2,0,-1)$ is a linear combination of $v=(6,-2,4)$ and $w=(-3,-1,2)$.
4. Find the value of $k \in \mathbb{R}$ such that the vector $u=$ $(k, 4, k)$ is a linear combination of $v=(-1,2,2)$ and $w=(4,2,1)$.
5. Polynomial $P(x)=x^{2}+3 x+c, c \in \mathbb{R}$ belongs to a linear span of $Q(x)=2 x^{2}-1$ and $R(x)=x+2$. Determine the value of c.
6. Find λ_{1}, λ_{2} and λ_{3} such that

$$
\lambda_{1}(2,1,3)+\lambda_{2}(0,-2,0)+\lambda_{3}(1,4,2)=(9,9,14)
$$

(remark: $\lambda_{1}, \lambda_{2}, \lambda_{3}$ are coordinates of $(9,9,14)$ with respect to the basis

$$
\{(2,1,3),(0,-2,0),(1,4,2)\} .)
$$

1.2 Matrices - intro

1. Let

$$
A=\left(\begin{array}{cc}
1 & 1 \\
-2 & 1
\end{array}\right), B=\left(\begin{array}{ll}
1 & 2
\end{array}\right), C=\binom{-1}{1}
$$

Compute (if possible)
$2 A+B C, A B+C, C B-A, 2 B A+C, B\left(C+\binom{2}{-1}\right)$
2. Is there $\alpha \in \mathbb{R}$ such that the matrix

$$
A=\left(\begin{array}{lll}
1 & \alpha & 1 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right)
$$

1.3 Matrices - the Gauss elimination method

1. Determine the rank of

$$
\left(\begin{array}{cccc}
1 & 0 & 2 & -1 \\
2 & 4 & 5 & 1 \\
0 & 2 & 1 & 1 \\
2 & 2 & 5 & -1
\end{array}\right)
$$

2. Solve

$$
\begin{aligned}
3 x+y-z & =1 \\
x-y+z & =-3 \\
2 x+y+z & =0
\end{aligned}
$$

3. Solve

$$
\begin{array}{r}
2 x+5 y=9 \\
x+2 y-z=3 \\
-3 x-4 z+7 z=1
\end{array}
$$

7. Let

$$
u=(2,4,6), v=(-1,-2,-3), w=(-2,-4,-6) .
$$

Is there a vector z such that $u \notin \operatorname{span}\{v, w, z\} ?$
8. How the dimension of

$$
\operatorname{span}\{(1,1,1),(2,2,2),(3,3, k)\}
$$

depends on k ?
9. Determine, whether b is a linear combination of a_{1}, a_{2} and a_{3} where

$$
\begin{aligned}
& a_{1}=(1,-2,2), a_{2}=(0,5,5) \\
& a_{3}=(2,0,8), b=(-5,11,8)
\end{aligned}
$$

10. Let

$$
M_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), M_{2}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right), M_{3}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) .
$$

Show that $\operatorname{span}\left\{M_{1}, M_{2}, M_{3}\right\}$ is a space of all symmetric matrices.
has a rank 3 ?
3. Do the vectors

$$
(0,0,-2),(0,-3,8),(4,-1,-5)
$$

span \mathbb{R}^{3} ?
4. Determine the rank of the matrix $A=\left(\begin{array}{ccc}3 & 2 & 3 \\ -2 & 2 & 1 \\ 3 & 0 & 1\end{array}\right)$ by using the definition of rank.
4. An amount of $\$ 65,000$ is invested in three bonds at the rates of $6 \%, 8 \%$ and 10% per annum respectively. The total annual income is $\$ 4,800$. The income from the third bond is $\$ 600$ more than that from the second bond. Determine the price of each bond.
5. Find all solutions to

$$
\begin{aligned}
2 x-3 y+z & =2 \\
-x+2 y-z & =-2 \\
3 x-4 y+z & =2
\end{aligned}
$$

1.4 Square matrices - intro

1. Verify that

$$
\left(\begin{array}{ll}
3 & 4 \\
2 & 3
\end{array}\right)^{-1}=\left(\begin{array}{cc}
3 & -4 \\
-2 & 3
\end{array}\right)
$$

2. Determine

$$
\left(\begin{array}{cc}
3 & -1 \\
4 & 2
\end{array}\right)^{-1}
$$

1.5 Square matrices - determinants

1. Compute

$$
\operatorname{det}\left(\begin{array}{ll}
\lambda-2 & 3 \\
1-\lambda & 2
\end{array}\right)
$$

where $\lambda \in \mathbb{R}$.
2. Compute

$$
\operatorname{det}\left(\begin{array}{ccc}
0 & 0 & 2 \\
1 & 0 & -1 \\
1 & 1 & 1
\end{array}\right)
$$

3. Compute

$$
\operatorname{det}\left(\begin{array}{cccc}
1 & 1 & -1 & 0 \\
0 & 0 & 2 & 0 \\
1 & 3 & 3 & -1 \\
0 & 1 & 0 & 1
\end{array}\right)
$$

1.6 Square matrices - eigenvalues

1. Determine the eigenvalues and eigenvectors (including the generalized ones) of a matrix

$$
A=\left(\begin{array}{ccc}
-5 & -3 & -1 \\
16 & 9 & 3 \\
-2 & -1 & 1
\end{array}\right)
$$

2. Find all eigenvectors and eigenvalues of

$$
A=\left(\begin{array}{ll}
3 & 2 \\
1 & 1
\end{array}\right)
$$

3. Find a matrix whose characteristic polynomial is $-\lambda^{3}+2 \lambda^{2}+\lambda-2$.
4. Compute

$$
\left(\begin{array}{ccc}
1 & -1 & 0 \\
2 & 1 & 0 \\
-1 & 1 & 1
\end{array}\right)^{-1}
$$

4. Is the matrix X solving

$$
\left(\begin{array}{ll}
2 & 1 \\
3 & 2
\end{array}\right) X+\left(\begin{array}{cc}
1 & -1 \\
2 & 3
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0
\end{array}\right)\binom{1}{-2}
$$

regular or singular?
4. Use the Cramer rule to solve

$$
\begin{aligned}
2 x-y+z & =3 \\
3 x+2 y+z & =7 \\
-x-y-2 z & =-6
\end{aligned}
$$

5. Compute

$$
\operatorname{det}\left(\begin{array}{ccccc}
1 & 1 & 0 & -1 & 0 \\
0 & 2 & 2 & 0 & 1 \\
-1 & 1 & 1 & 0 & 3 \\
-2 & 0 & 0 & 0 & 3 \\
1 & -1 & 1 & -1 & 3
\end{array}\right)
$$

4. Find eigenvalues (not eigenvectors) of

$$
A=\left(\begin{array}{cccc}
1 & 2 & -1 & 1 \\
4 & 3 & -2 & -2 \\
0 & 1 & 2 & 1 \\
0 & 2 & 2 & 3
\end{array}\right)
$$

5. Find all vectors (including the generalized) of

$$
A=\left(\begin{array}{ccc}
2 & -1 & 1 \\
1 & 0 & 1 \\
2 & -4 & 4
\end{array}\right)
$$

1.7 Square matrices - quadratic forms and definiteness

1. Write the quadratic form Q whose corresponding matrix is

- $\left(\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right)$
- $\left(\begin{array}{ccc}-1 & 0 & 1 \\ 0 & 2 & 2 \\ 1 & 2 & -2\end{array}\right)$

2. Write the symmetric matrix corresponding to

- $Q(x, y)=x^{2}+3 x y-y^{2}$
- $Q(x, y, z)=2 x^{2}-5 x y+3 y z-2 z^{2}$
- $Q(x, y, z)=x(x+2 y)+(3 x-y)(2 x-2 y)$

3. Decide about the definiteness of the following matrices:

- $\left(\begin{array}{ll}1 & 3 \\ 3 & 4\end{array}\right)$
- $\left(\begin{array}{ccc}2 & 1 & -2 \\ 1 & 1 & -2 \\ -2 & -2 & 2\end{array}\right)$
- $\left(\begin{array}{cccc}-2 & -2 & -1 & 1 \\ -2 & -4 & 1 & 1 \\ -1 & 1 & -3 & 1 \\ 1 & 1 & 1 & -2\end{array}\right)$

2 Sequences and series

2.1 sequences - basic properties

1. Find an explicit formula of the sequence given as

$$
a_{1}=1, a_{n}=n+a_{n-1} \text { for } n \geq 2
$$

and decide about the monotonicity and boundedness of the sequence.
2. Determine, whether the sequence

$$
a_{n}=\frac{n+2}{2 n-1}
$$

is bounded or monotone. Justify your answer.
3. Give a guess of an explicit formula for a sequence whose first terms are

$$
\left\{\frac{1}{5},-\frac{1}{7}, \frac{1}{9},-\frac{1}{11}, \ldots\right\} .
$$

2.2 sequences - limits

1. Solve

$$
\lim (\sqrt{2 n}-\sqrt{2 n-1}) \sqrt{n}
$$

2. Solve

$$
\lim \frac{\sqrt{n}+n^{\frac{1}{3}}}{n^{\frac{1}{2}}-1}
$$

3. Solve

$$
\lim \frac{(n+1)^{4}}{(n+\sqrt{n})^{3}}
$$

4. Solve

$$
\lim \left(\frac{2 n-3}{2 n}\right)^{n}
$$

5. Solve

$$
\lim \frac{\sqrt[3]{n}^{4}+n^{2} 2^{n}}{n-1+e^{n}}
$$

6. Solve

$$
\lim \frac{\sqrt[3]{n^{2}}}{n+1} \sin n!
$$

7. Solve

$$
\lim \frac{3 n^{6}+4 n-3}{(2 n+3)^{6}}
$$

8. Solve

$$
\lim \sqrt{n^{4}-5 n}-n^{2}
$$

9. Solve

$$
\lim \frac{(-1)^{n}\left(\sqrt{n^{2}+1}-1\right)}{n}
$$

10. Solve

$$
\lim \left(\frac{2 n-1}{2 n+1}\right)^{n}
$$

11. Solve

$$
\lim \sqrt{n^{2}+3 n}-n
$$

4. Find an explicit formula for a sequence given as

$$
a_{1}=\frac{1}{2}, a_{n+1}=a_{n}+\left(\frac{1}{2}\right)^{n+1} \text { for } n \geq 1
$$

5. Below you can find 6 sequences. Which of them are monotone? And which of them are bounded?

$$
\begin{aligned}
& a_{n}=\frac{1}{n^{2}}, b_{n}=2^{n}, c_{n}=\frac{3^{n}}{n^{3}} \\
& d_{n}=\frac{2 n^{3}+1}{5 n^{3}+3 n^{2}+2}, e_{n}=(0,9)^{n}, f_{n}=\frac{\cos (n \pi)}{n^{2}}
\end{aligned}
$$

12. Solve

$$
\lim \frac{(2 n+1)^{2}(n-2)^{3}}{(n+1)^{5}}
$$

13. Solve

$$
\lim \frac{\sqrt{n}(2 n-4)}{\sqrt{n^{3}+3 n}}
$$

14. Solve

$$
\lim \frac{\left(2 n^{2}-4 n+1\right) \sqrt{n}}{\sqrt{n^{5}+4 n}}
$$

15. Solve

$$
\lim \sqrt[3]{n}^{2}(\sqrt[3]{n}-\sqrt[3]{n-1})
$$

16. Solve

$$
\lim \frac{3^{n}+n 2^{n}}{4^{n}}
$$

17. Solve

$$
\lim \frac{e^{5 n}}{3-e^{2 n}}
$$

18. Solve

$$
\lim \frac{n^{2}+1}{(-1-n)(n+2)}
$$

19. Solve

$$
\lim \sqrt{n}(\sqrt{2 n}-\sqrt{2 n-1})
$$

20. Solve

$$
\lim \frac{1-n^{3}}{n+3}
$$

21. Solve

$$
\lim \frac{\log (n+2)}{\log (1+4 n)}
$$

2.3 series - introduction

1. Find values of

$$
\sum_{n=0}^{5} 2^{n}, \quad \sum_{n=0}^{8} 2^{n}, \quad \sum_{n=1}^{5} 2^{n} .
$$

2. Write the first three partial sums of

$$
\sum_{n=1}^{\infty} \frac{2^{-n}}{n^{2}+1}
$$

3. Make an index shift so that

$$
\sum_{n=7}^{\infty} \frac{4-n}{n^{2}+1}
$$

starts at $n=3$.
4. Write the first three partial sums of

$$
\sum_{n=3}^{\infty} \frac{2 n}{n+2}
$$

5. Evaluate

$$
\sum_{n=3}^{\infty}\left(\frac{2}{3}\right)^{n}
$$

2.4 series - positive summands

1. Decide about the convergence of

$$
\sum_{n=1}^{\infty} \frac{\sin ^{2} n\left(2 n^{3}+7\right)}{n^{5}+1}
$$

2. Examine

$$
\sum_{n=1}^{\infty} \frac{7}{n(n+1)}
$$

3. Decide about the convergence

$$
\sum_{n=1}^{\infty} n \frac{2^{n}}{3^{n}}
$$

4. Examine

$$
\sum_{n=1}^{\infty} \frac{n^{2}+9 n}{4+2 n^{2}}
$$

5. Examine

$$
\sum_{n=2}^{\infty} \frac{n^{2}}{n^{3}-3}
$$

6. Decide about the convergence of

$$
\sum_{n=1}^{\infty} \frac{2^{3 n}(n+1)}{n^{2} 5^{1+n}}
$$

7. Examine the convergence of

$$
\sum_{n=4}^{\infty} \frac{5^{2 n}}{2^{5 n-3}}
$$

8. Decide about the convergence of

$$
\sum_{n=1}^{\infty} \frac{[(n+1)!]^{n}}{2!\cdot 4!\cdots(2 n)!}
$$

2.5 series - general case

1. Examine

$$
\sum_{n=1}^{\infty} \frac{\cos n}{n^{2}}
$$

6. Find the value of $a \in \mathbb{R}$ such that

$$
\sum_{n=0}^{\infty} \frac{a x^{n}}{n!}=1
$$

Find also the value of $b \in \mathbb{R}$ such that

$$
\sum_{n=2}^{\infty} \frac{b x^{n}}{n!}=1
$$

(Hint: $\left.e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}\right)$
9. Examine

$$
\sum_{n=1}^{\infty} \frac{5}{6 n}
$$

10. Examine

$$
\sum_{n=3}^{\infty} \frac{1}{\sqrt{2 n-3} \sqrt{2 n+3}}
$$

11. Decide about the convergence of

$$
\sum_{n=1}^{\infty} \frac{3^{n}+(-2)^{n}}{6^{n}}
$$

12. Examine

$$
\sum_{n=1}^{\infty}\left(e^{\frac{1}{n^{2}}}-1\right)
$$

13. Examine

$$
\sum_{n=1}^{\infty} \frac{3^{n}}{n^{2} 5^{n}}
$$

14. Examine

$$
\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}+3}
$$

15. Examine

$$
\sum_{n=1}^{\infty}\left(\frac{1+\cos n}{2+\cos n}\right)^{n}
$$

16. Decide about the convergence of

$$
\sum_{n=1}^{\infty} \frac{n^{n+1 / n}}{\left(n+\frac{1}{n}\right)^{n}}
$$

3. Examine

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{n-1}{n+1} \frac{1}{\sqrt[100]{n}}
$$

4. Decide about the convergence of

$$
\sum_{n=1}^{\infty} \sin \left(\frac{n \pi}{2}\right) n^{-2}
$$

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{\sqrt{n}+2}{n}
$$

5. Examine

$$
\sum_{n=1}^{\infty}(-1)^{n(n-1)} \frac{1}{n}
$$

3 Functions of multiple variables

3.1 Intro - topology

1. Find the boundary of

$$
M=\left\{(x, y) \in \mathbb{R}^{2}, x>y, y>x^{2}\right\} .
$$

2. Determine whether

$$
M=\left\{(x, y) \in \mathbb{R}^{2}, x^{2}>y, y>1\right\}
$$

is open or closed.

3.2 Intro - functions

1. Determine and sketch domains of the following functions

$$
\begin{array}{cl}
a(x)=\frac{1}{\ln \left(x^{2}-y\right)}, & b(x)=\sqrt{\frac{x+y}{x-y}} \\
c(x)=\sqrt{2-|x+y|}, & d(x)=\sqrt{x^{2}+x y+1} \\
e(x)=\sqrt{\frac{1-|x|}{|y|-1},} & f(x)=x-\frac{3}{y}+\ln (x-3 y)
\end{array}
$$

2. Determine and sketch contour lines at heights $-2,-1,0,1,2$ of

$$
\begin{gathered}
a(x)=x^{2}+y, \quad b(x)=x^{2}-y^{2} \\
c(x)=|x|+|2-y|, \quad d(x)=\frac{1}{1+x^{2}+y^{2}} \\
e(x)=\frac{x+1}{y-2}, \quad f(x)=\frac{x^{2}+y^{2}}{2 x+y} .
\end{gathered}
$$

3. Let

$$
f(x, y)=\frac{x^{2}+y}{x+y^{2}}
$$

Find its cross-section along the line

$$
p:(x, y)=(1,1)+t(-2,1), t \in \mathbb{R}
$$

3.3 Derivatives

- Compute the derivative of f with respect to direction v at point $\left(x_{0}, y_{0}\right)$ where

1. $f(x, y)=x^{2}+2 y, v=\left(\frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right),\left(x_{0}, y_{0}\right)=$ $(-1,0)$,
2. $f(x, y)=y^{2} \sin x, v=\left(\frac{3}{5}, \frac{4}{5}\right),\left(x_{0}, y_{0}\right)=(2,5)$,
3. $f(x, y)=x+e^{x y}, v=\left(\frac{12}{13}, \frac{5}{13}\right),\left(x_{0}, y_{0}\right)=(0,0)$.

- Compute first partial derivatives of the following functions

$$
\begin{aligned}
a(x, y)=e^{x\left(y^{2}+x y\right)}, & b(x, y)=\left(x^{2}+y\right) \sin x \\
c(x, y, z)=\frac{x e^{y}}{z+x}, & d(x, y)=\left(x^{2}+3 x y\right)^{\ln (x y)} \\
e(x, y)=\left(x^{2}+2 y\right) \cos (x y), & f(x, y)=\frac{(2 x-3 y)^{5}}{x^{2}-1}
\end{aligned}
$$

6. Examine

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{2+(-1)^{n}}{n}
$$

3. For every set given below, give one interior and one boundary point and determine whether the set is open or closed
(a) $A=\left\{(x, y) \in \mathbb{R}^{2}, \frac{1}{4}(x-1)^{2}+\frac{1}{9}(y-3)^{2} \leq 1\right\}$
(b) $B=\left\{(x, y) \in \mathbb{R}^{2}, y \neq x^{2}\right\}$
(c) $C=\left\{(x, y) \in \mathbb{R}^{2}, x^{2}+y^{2}=1\right\}$
(d) $D=\left\{(x, y) \in \mathbb{R}^{2}, y>\sin x\right\}$
4. Write $g(t)=f\left(1+t, t^{2}\right)$ where

$$
f(x, y)=x^{2}+\sqrt{y}
$$

determine its domain and sketch its graph.
5. Examine

$$
\begin{aligned}
\lim _{(x, y) \rightarrow(0,0)} \frac{2 x y}{3 x^{2}+y^{2}}, & \lim _{(x, y) \rightarrow(0,0)} \frac{4 x y^{2}}{x^{2}+3 y^{4}} \\
\lim _{(x, y) \rightarrow(2,1)} \frac{(x-2)(y-1)}{(x-2)^{2}+(y-1)^{2}}, & \lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{3}+y^{3}} \\
\lim _{(x, y) \rightarrow(a, a)} \frac{x^{4}-y^{4}}{x^{3}-y^{3}}, a \in \mathbb{R}, & \lim _{(x, y) \rightarrow(0,0)} \frac{\sin (x y)}{x+y} \\
\lim _{(x, y) \rightarrow(0,0)} \frac{5 x^{2} y^{2}}{x^{2}+y^{2}}, & \lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-y^{2}}{x^{2}+y^{2}}
\end{aligned}
$$

6. Compute

$$
\lim _{x \rightarrow 0}\left(\lim _{y \rightarrow 0} \frac{x y+\sin (x y)}{x y}\right), \quad \lim _{y \rightarrow 0}\left(\lim _{x \rightarrow 0} \frac{\left(x^{2}-2 x y+y^{2}\right)}{x y}\right)
$$

- Compute ∇^{2} of the following functions

$$
\begin{aligned}
a(x, y)=x^{y}, \quad b(x, y)=\frac{x^{2}}{y} \\
c(x, y, z)=\frac{x+y}{y+z}, \quad d(x, y)=\frac{\sqrt{x}}{y^{2}+1} \\
e(x, y)=x \sqrt{x^{2}+y^{2}}, \quad f(x, y)=\left(x^{2}+y^{2}\right)^{-2}(x-y)^{3}
\end{aligned}
$$

- Write the tangent plane to the graph of function

$$
f(x, y)=\frac{1}{\sqrt{x^{2}+y}}
$$

at point $\left(x_{0}, y_{0}\right)=(2,5)$.

- Write the tangent plane to the graph of function

$$
f(x, y)=\frac{\ln (x+3 y)}{(x-1) y}
$$

at point $\left(x_{0}, y_{0}\right)=(-2,1)$.

- Let $f(x, y)=x \sin \left(x+y^{2}\right)$. Let $x(t)=t^{2}+t$ and $y(t)=e^{t} \ln t$. Compute

$$
\frac{\partial}{\partial t} f(x(t), y(t)) .
$$

- Write the second order Taylor polynomial at point $(1,1)$ for

$$
f(x, y)=\ln \left(2 y-x^{2}\right) .
$$

- Use the second order Taylor polynomial to deduce an

3.4 Implicit function theorem

1. Show that the equation

$$
2 x^{2}+e^{y}=3
$$

uniquely determines a function $y(x)$ in the vicinity of $(1,0)$. Compute $y^{\prime}(1)$ and $y^{\prime \prime}(1)$.
2. Use the implicit function theorem to show that the equation

$$
x y^{2}-\sin y=0
$$

determines a function $y(x)$ in the neighborhood of $(3,0)$. Compute $y^{\prime}(3)$.

3.5 Extremes

1. Find local extremes of a function

$$
f(x, y)=x^{3}+8 y^{3}-6 x y+5 .
$$

2. Find all local maxima and minima of $f(x, y)=$ $e^{2 x+3 y}\left(8 x^{2}-6 x y+3 y^{2}\right)$.
3. Find all local maxima and minima of a function

$$
f(x, y)=x^{4}+y^{4}-x^{2}-2 x y-y^{2}
$$

4. Find the global maximum and minimum values of $f(x, y)=x^{2}+4 y^{2}-2 x+8 y$ subject to the constraint $x+2 y=7$.
5. Find the global maximum and minimum values of $f(x, y)=x^{2}+2 y^{2}-4 y$ subject to the constraint $x^{2}+y^{2}=9$.

4 Systems of differential equations

4.1 Introduction

1. Express

$$
\begin{array}{r}
x^{\prime \prime}-3 x^{\prime}+y-x=0 \\
y^{\prime \prime \prime}+y^{\prime \prime}-x^{\prime}+y^{\prime}+x=0
\end{array}
$$

as a system of first-order differential equations.
approximate value of

$$
2^{(1.9)^{2}+(0.12)^{2}}
$$

- Write the second order Taylor polynomial at point $(-1,1,2)$ for

$$
f(x, y, z)=x^{2}+(2 x y)(z+3)
$$

- Use the second order Taylor polynomial to deduce an approximate value of

$$
\sqrt{(2.1)^{2}+(1.9)^{2}+(1.1)^{2}}
$$

3. Find a tangent line to a curve

$$
e^{x y}+\sin y+y^{2}=1
$$

passing through $(2,0)$.
4. Is there a function $y(x)$ determined by

$$
y+x y^{2}-x e^{x}=0
$$

in the neighborhood of $(0,0)$? If yes, write its approximation by the second order Taylor polynomial.
6. Find the global maximum and minimum values of $f(x, y)=x^{2}+x y$ subject to the constraint $y \leq 9$, $y \geq x^{2}$.
7. Find the maximum and minimum values of $f(x, y)=$ $x^{2}+y^{2}$ on the set $M=\left\{(x, y) \in \mathbb{R}^{2}, x y \leq 1, x \geq\right.$ $1 / 2, y \geq 1 / 2\}$.
8. Find the maximum and minimum of $f(x, y, z)=x y z$ on a set $M=\left\{x^{2}+y^{2}+z^{2}=1, x+y+z=0\right\}$.
9. Find the maximum and minimum of $f(x, y, z)=z+e^{x y}$ on a set $M=\left\{x^{2}+y^{2}+z^{2}=1, x^{2}+y^{2}=z\right\}$.
10. Find the maximum and minimum of $f(x, y, z)=x^{2}+$ $2 x z+y^{2}+z$ on a set $M=\left\{x^{2}+y^{2}+z^{2} \leq 1, x=y^{2}+z^{2}\right\}$.
2. Rewrite the system

$$
\begin{aligned}
x^{\prime} & =2 x+5-3 y \\
y^{\prime} & =6-z-x-y \\
z^{\prime} & =x+z+20
\end{aligned}
$$

into a matrix form (i.e., $\mathbf{x}^{\prime}=A \mathbf{x}+\mathbf{b}$ where \mathbf{x} is the vector whose components are x, y and $z)$.

4.2 Linear systems

1. Find all solutions to

$$
\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{cc}
-4 & 2 \\
2 & -1
\end{array}\right)\binom{x}{y} .
$$

2. Find the fundamental system set for $x^{\prime}=A x$ where
(a)

$$
A=\left(\begin{array}{cc}
-1 & 1 \\
8 & 1
\end{array}\right)
$$

(b)

$$
A=\left(\begin{array}{lll}
3 & 1 & -1 \\
1 & 3 & -1 \\
3 & 3 & -1
\end{array}\right)
$$

3. Find the general solution to the system

$$
\begin{aligned}
x^{\prime} & =x+2 y-z \\
y^{\prime} & =x+z \\
z^{\prime} & =4 x-4 y+5 z
\end{aligned}
$$

4. Find all solutions to

$$
x^{\prime}=\left(\begin{array}{cc}
-3 & -1 \\
2 & -1
\end{array}\right) x
$$

5. Solve the initial value problem

$$
\begin{aligned}
x^{\prime} & =4 x+y \\
y^{\prime} & =-2 x+y \\
(x(0), y(0)) & =(1,0)
\end{aligned}
$$

4.3 Phase plane

1. Verify, that the $x(t)=e^{3 t}$ and $y(t)=e^{t}$ is a solution to

$$
\begin{aligned}
x^{\prime} & =3 y^{3} \\
y^{\prime} & =y
\end{aligned}
$$

and sketch this particular trajetory into the phase plane.
2. Find the critical points of

$$
\begin{aligned}
& x^{\prime}=y^{2}-3 y+2 \\
& y^{\prime}=(x-1)(y-2)
\end{aligned}
$$

4.4 Stability of critical points

1. Classify the critical point at the origin of

$$
\begin{aligned}
x^{\prime} & =5 x+6 y \\
y^{\prime} & =-5 x-8 y
\end{aligned}
$$

2. Classify the critical point at the origin of

$$
\begin{aligned}
x^{\prime} & =6 x-y \\
y^{\prime} & =8 y .
\end{aligned}
$$

3. Find and classify the critical point of

$$
\begin{aligned}
x^{\prime} & =-4 x+2 y+8 \\
y^{\prime} & =x-2 y+1
\end{aligned}
$$

4. Find and classify the critical point of

$$
\begin{aligned}
x^{\prime} & =2 x+4 y+4 \\
y^{\prime} & =3 x+5 y+4
\end{aligned}
$$

6. Find the solution to

$$
x^{\prime}=\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 2 & 0 \\
1 & 0 & 1
\end{array}\right) x
$$

which satisfies

$$
x(0)=\left(\begin{array}{c}
-2 \\
2 \\
-1
\end{array}\right)
$$

7. Solve the initial value problem

$$
x^{\prime}=\left(\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right) x, \quad x(0)=\binom{3}{1}
$$

8. Find all solution to

$$
\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{ll}
6 & 1 \\
4 & 3
\end{array}\right)\binom{x}{y}+\binom{-11}{-5}
$$

9. Solve the initial value problem

$$
\begin{aligned}
x^{\prime}-2 y & =4 t, \quad x(0)=4 \\
y^{\prime}+2 y-4 x & =-4 t-2, \quad(0)=-5 .
\end{aligned}
$$

3. Find all the critical points of the system

$$
\begin{aligned}
x^{\prime} & =x^{2}-1 \\
y^{\prime} & =x y
\end{aligned}
$$

and sketch few representative trajectories into the phase plane.
4. Find the critical points and solve the related phase plane diagram equation for the system

$$
\begin{aligned}
x^{\prime} & =(x-1)(y-1) \\
y^{\prime} & =y(y-1) .
\end{aligned}
$$

5. A simplified model for an arms race between two countries whose expenditures for defense are expressed by the variables $x(t)$ and $y(t)$ is given by linear system

$$
\begin{gathered}
x^{\prime}=2 y-x+a, \quad x(0)=1 \\
y^{\prime}=4 x-3 y+b, \quad y(0)=4
\end{gathered}
$$

where a and b are constants that measure the trust (or distrust) each country has for the other. Determine whether there is going to be disarment (x and y approach 0 as t increases), a stabilized arms race (x and y approach a constant as $t \rightarrow \infty$), or a runaway arms race (x and y approach ∞ as $t \rightarrow \infty$).
6. Show, that the system

$$
\begin{aligned}
& x^{\prime}=3 x+2 y-y^{2} \\
& y^{\prime}=-2 x-2 y+x y
\end{aligned}
$$

is almost linear near the origin.
7. Find the critical points of

$$
\begin{aligned}
x^{\prime} & =x+y \\
y^{\prime} & =5 y-x y+6
\end{aligned}
$$

and discuss their type and stability.
8. Find the critical points of

$$
\begin{aligned}
x^{\prime} & =4-x y \\
y^{\prime} & =x-y
\end{aligned}
$$

and discuss their type and stability.

