1 Introduction

1.1 Mathematical induction

1. Show that

$$
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\ldots+\frac{1}{n(n+1)}=\frac{n}{n+1}
$$

holds for every $n \in \mathbb{N}$
2. Show that

$$
1 \cdot 2+2 \cdot 3+3 \cdot 4+\ldots+n(n+1)=\frac{1}{3} n(n+1)(n+2)
$$

2 Linear algebra

2.1 Vectors

1. Let $u=(-1,5), v=(2.7,3.8), w=(4.2,-6)$. Compute $u+v, u-v, v-u, v-w, u+2 w, 3 u-v, u+v+w$, $3 u-2 v-5 w, \frac{1}{2} w+\frac{3}{4} v-\frac{5}{2} u$.
2. Are vectors

$$
\begin{aligned}
v_{1} & =(1,1,1,2) \\
v_{2} & =(1,2,-1,1) \\
v_{3} & =(0,1,1,2)
\end{aligned}
$$

linearly independent?
3. Check if the vector $u=(2,0,-1)$ is a linear combination of $v=(6,-2,4)$ and $w=(-3,-1,2)$.
4. Find the value of $k \in \mathbb{R}$ such that the vector $u=$ $(k, 4, k)$ is a linear combination of $v=(-1,2,2)$ and $w=(4,2,1)$.
5. Polynomial $P(x)=x^{2}+3 x+c, c \in \mathbb{R}$ belongs to a linear span of $Q(x)=2 x^{2}-1$ and $R(x)=x+2$. Determine the value of c.
6. Find λ_{1}, λ_{2} and λ_{3} such that

$$
\lambda_{1}(2,1,3)+\lambda_{2}(0,-2,0)+\lambda_{3}(1,4,2)=(9,9,14)
$$

(remark: $\lambda_{1}, \lambda_{2}, \lambda_{3}$ are coordinates of $(9,9,14)$ with respect to the basis

$$
\{(2,1,3),(0,-2,0),(1,4,2)\} .)
$$

2.2 Matrices - intro

1. Let

$$
A=\left(\begin{array}{cc}
1 & 1 \\
-2 & 1
\end{array}\right), B=\left(\begin{array}{ll}
1 & 2
\end{array}\right), C=\binom{-1}{1}
$$

Compute (if possible)
$2 A+B C, A B+C, C B-A, 2 B A+C, B\left(C+\binom{2}{-1}\right)$
2. Is there $\alpha \in \mathbb{R}$ such that the matrix

$$
A=\left(\begin{array}{lll}
1 & \alpha & 1 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right)
$$

2.3 Matrices - the Gauss elimination method
holds for every $n \in \mathbb{N}$.
3. Show that

$$
2^{n}>n^{2}
$$

for every $n \in \mathbb{N}$.
4. Show that 6 is a divisor of $10^{n}-4$ for every natural number n.
7. Let

$$
u=(2,4,6), v=(-1,-2,-3), w=(-2,-4,-6)
$$

Is there a vector z such that $u \notin \operatorname{span}\{v, w, z\} ?$
8. How the dimension of

$$
\operatorname{span}\{(1,1,1),(2,2,2),(3,3, k)\}
$$

depends on k ?
9. Determine, whether b is a linear combination of a_{1}, a_{2} and a_{3} where

$$
\begin{aligned}
& a_{1}=(1,-2,2), a_{2}=(0,5,5) \\
& a_{3}=(2,0,8), b=(-5,11,8)
\end{aligned}
$$

10. Let

$$
M_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), M_{2}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right), M_{3}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Show that $\operatorname{span}\left\{M_{1}, M_{2}, M_{3}\right\}$ is a space of all symmetric matrices.
has a rank 3 ?
3. Do the vectors

$$
(0,0,-2),(0,-3,8),(4,-1,-5)
$$

span \mathbb{R}^{3} ?
4. Determine the rank of the matrix $A=\left(\begin{array}{ccc}3 & 2 & 3 \\ -2 & 2 & 1 \\ 3 & 0 & 1\end{array}\right)$ by using the definition of rank.

1. Determine the rank of

$$
\left(\begin{array}{cccc}
1 & 0 & 2 & -1 \\
2 & 4 & 5 & 1 \\
0 & 2 & 1 & 1 \\
2 & 2 & 5 & -1
\end{array}\right)
$$

2. Solve

$$
\begin{aligned}
3 x+y-z & =1 \\
x-y+z & =-3 \\
2 x+y+z & =0
\end{aligned}
$$

3. Solve

$$
\begin{array}{r}
2 x+5 y=9 \\
x+2 y-z=3 \\
-3 x-4 z+7 z=1
\end{array}
$$

2.4 Square matrices - intro

1. Verify that

$$
\left(\begin{array}{ll}
3 & 4 \\
2 & 3
\end{array}\right)^{-1}=\left(\begin{array}{cc}
3 & -4 \\
-2 & 3
\end{array}\right)
$$

2. Determine

$$
\left(\begin{array}{cc}
3 & -1 \\
4 & 2
\end{array}\right)^{-1}
$$

2.5 Square matrices - determinants

1. Compute

$$
\operatorname{det}\left(\begin{array}{ll}
\lambda-2 & 3 \\
1-\lambda & 2
\end{array}\right)
$$

where $\lambda \in \mathbb{R}$.
2. Compute

$$
\operatorname{det}\left(\begin{array}{ccc}
0 & 0 & 2 \\
1 & 0 & -1 \\
1 & 1 & 1
\end{array}\right)
$$

3. Compute

$$
\operatorname{det}\left(\begin{array}{cccc}
1 & 1 & -1 & 0 \\
0 & 0 & 2 & 0 \\
1 & 3 & 3 & -1 \\
0 & 1 & 0 & 1
\end{array}\right)
$$

2.6 Square matrices - eigenvalues

1. Determine the eigenvalues and eigenvectors (including the generalized ones) of a matrix

$$
A=\left(\begin{array}{ccc}
-5 & -3 & -1 \\
16 & 9 & 3 \\
-2 & -1 & 1
\end{array}\right)
$$

2. Find all eigenvectors and eigenvalues of

$$
A=\left(\begin{array}{ll}
3 & 2 \\
1 & 1
\end{array}\right)
$$

4. An amount of $\$ 65,000$ is invested in three bonds at the rates of $6 \%, 8 \%$ and 10% per annum respectively. The total annual income is $\$ 4,800$. The income from the third bond is $\$ 600$ more than that from the second bond. Determine the price of each bond.
5. Find all solutions to

$$
\begin{aligned}
2 x-3 y+z & =2 \\
-x+2 y-z & =-2 \\
3 x-4 y+z & =2
\end{aligned}
$$

3. Compute

$$
\left(\begin{array}{ccc}
1 & -1 & 0 \\
2 & 1 & 0 \\
-1 & 1 & 1
\end{array}\right)^{-1}
$$

4. Is the matrix X solving

$$
\left(\begin{array}{ll}
2 & 1 \\
3 & 2
\end{array}\right) X+\left(\begin{array}{cc}
1 & -1 \\
2 & 3
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0
\end{array}\right)\binom{1}{-2}
$$

regular or singular?
4. Use the Cramer rule to solve

$$
\begin{aligned}
2 x-y+z & =3 \\
3 x+2 y+z & =7 \\
-x-y-2 z & =-6
\end{aligned}
$$

5. Compute

$$
\operatorname{det}\left(\begin{array}{ccccc}
1 & 1 & 0 & -1 & 0 \\
0 & 2 & 2 & 0 & 1 \\
-1 & 1 & 1 & 0 & 3 \\
-2 & 0 & 0 & 0 & 3 \\
1 & -1 & 1 & -1 & 3
\end{array}\right)
$$

6. Find $\alpha \in \mathbb{R}$ for which is the matrix
singular
7. Find a matrix whose characteristic polynomial is $-\lambda^{3}+2 \lambda^{2}+\lambda-2$.
8. Find eigenvalues (not eigenvectors) of

$$
A=\left(\begin{array}{cccc}
1 & 2 & -1 & 1 \\
4 & 3 & -2 & -2 \\
0 & 1 & 2 & 1 \\
0 & 2 & 2 & 3
\end{array}\right)
$$

5. Find all vectors (including the generalized) of

$$
A=\left(\begin{array}{ccc}
2 & -1 & 1 \\
1 & 0 & 1 \\
2 & -4 & 4
\end{array}\right)
$$

2.7 Square matrices - quadratic forms and definiteness

1. Write the quadratic form Q whose corresponding matrix is

- $\left(\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right)$
- $\left(\begin{array}{ccc}-1 & 0 & 1 \\ 0 & 2 & 2 \\ 1 & 2 & -2\end{array}\right)$

2. Write the symmetric matrix corresponding to

- $Q(x, y)=x^{2}+3 x y-y^{2}$
- $Q(x, y, z)=2 x^{2}-5 x y+3 y z-2 z^{2}$

3 Functions

3.1 Domains

1. Find the maximal domain of $f(x)=\sqrt{x^{2}-5 x+6}$.
2. Find the maximal domain of $f(x)=\frac{x}{x^{2}-4}$.
3. Find the maximal domain of $f(x)=\frac{1}{\sqrt{16-x^{2}}}$.

3.2 Parity

1. Decide about the parity of $f(x)=x \sin x$.
2. Decide about the parity of $f(x)=x^{3}+2$.

3.3 Inverse function

1. Find f^{-1} (if possible) for $f(x)=\frac{1}{\sqrt{9+x^{2}}}$.
2. Find f^{-1} (if possible) for $f(x)=1-\sqrt{x+2}$.
3. Find f^{-1} (if possible) for $f(x)=\frac{\sqrt{x^{2}-4}}{x}, x \in[2, \infty)$.

3.4 Limits 1

1. Solve

$$
\lim _{x \rightarrow 3} x+2
$$

2. Solve

$$
\lim _{x \rightarrow 3} \frac{x^{2}-5 x+6}{x^{2}+3 x-18}
$$

3. Solve

$$
\lim _{x \rightarrow+\infty} \frac{1}{2} x^{3}-x+1
$$

4. Solve

$$
\lim _{x \rightarrow+\infty} \frac{x+2}{x^{2}+3}
$$

$$
\lim _{x \rightarrow-\infty} \frac{x^{4}}{x+1}
$$

6. Solve

$$
\lim _{x \rightarrow 0} \frac{x^{3}+x+1}{x^{2}+x}
$$

7. Solve

$$
\lim _{x \rightarrow-1} \frac{x^{3}-x+2}{x^{2}+2 x+1}
$$

8. Solve

$$
\lim _{x \rightarrow+\infty} \frac{x^{3}+2 x}{x^{3}-1}
$$

9. Solve

$$
\lim _{x \rightarrow-\infty} \sqrt{x^{2}+1}
$$

10. Solve

$$
\lim _{x \rightarrow 4} \frac{x^{2}-18}{x^{2}-8 x+16}
$$

11. Solve

$$
\lim _{x \rightarrow 0} \frac{\sin 3 x}{x}
$$

12. Solve

$$
\lim _{x \rightarrow 0} \frac{\sin 5 x}{\sin 3 x}
$$

13. Solve

$$
\lim _{x \rightarrow \infty} e^{-x}
$$

14. Solve

$$
\lim _{x \rightarrow-\infty} \frac{\sin x}{x}
$$

3.5 Derivatives

1.

$$
\left(x^{2}+\frac{1}{\sqrt{x}}\right)^{\prime}
$$

2.

$$
\left(\frac{x+1}{x^{2}+1}\right)^{\prime}
$$

3.

$$
\left(\sqrt{x^{2}+5}\right)^{\prime}
$$

4.

$$
\left(e^{x+x^{2} \sin x}\right)^{\prime}
$$

5.

$$
\left(\frac{x^{3}+x \sin x}{\sqrt{x^{2}+1}}\right)^{\prime}
$$

6.

$$
\left(\sin \left(\frac{x^{2}+1}{x}\right)\right)^{\prime}
$$

3.6 Tangent lines

1. Find the tangent line to the graph of $f(x)=e^{x^{2}-1}$ at $A=[-1,1]$.
2. Find the tangent line to the graph of $f(x)=1+\frac{1}{x}$ at $A=[1, ?]$.

3.7 The course of f

1. Draw the graph of the function f with the following properties: $\operatorname{Dom} f=\mathbb{R}$, even, does not have a derivative at $x=0, f^{\prime}>0$ on $(-\infty,-1), f(0)=-2$.
2. Draw the graph of the function f with the following properties: $\operatorname{Dom} f=(0, \infty), f(5)=0, f^{\prime}(x)<4$ on $(0,4)$ and $f^{\prime}(x)>0$ on $(4, \infty), \lim _{x \rightarrow 0+}=5$.
3. Examine the course of

$$
f(x)=x^{3}-5 x^{2}+3 x-5
$$

15. Solve

$$
\lim _{x \rightarrow 0} \frac{e^{x}-e^{-x}}{\sin x}
$$

16. Solve

$$
\lim _{x \rightarrow 0} \frac{\sqrt{1-\cos x}}{e^{2 x}-e^{-2 x}}
$$

17. Solve

$$
\lim _{x \rightarrow 0+} x^{x}
$$

18. Solve

$$
\lim _{x \rightarrow 1} \frac{\log x}{e^{x-1}-1}
$$

7.

$$
\left(\sqrt{\sin \left(x^{2}\right)}\right)^{\prime}
$$

8.

$$
\left(\sqrt{1-\sin ^{2} x}\right)^{\prime}
$$

9.

$$
\left(\sqrt{\sqrt{\sqrt{1+x^{2}}}}\right)^{\prime}
$$

10.

$$
\left(\frac{2 x}{x^{2}+4}\right)^{\prime \prime}
$$

11.

$$
\left(x \sqrt[3]{1+\sin ^{2} x}\right)^{\prime \prime}
$$

12.

$$
\left(e^{2 x^{2}+x}\right)^{\prime \prime \prime}
$$

3. Find the tangent line to the graph of $f(x)=3-x^{2}$ whose slope is $k=-2$.
4. Find the tangent line to the graph of $f(x)=\frac{x^{2}}{x+1}$ which is parallel to $y=4-x$.
5. Examine the course of

$$
f(x)=x^{2}(4-x)^{2} .
$$

5. Examine the course of

$$
f(x)=\frac{x^{2}+1}{x^{2}-1} .
$$

6. Examine the course of

$$
f(x)=(1+\cos x) \sin x
$$

4 Functions of multiple variables

4.1 Introduction

1. Determine and sketch domains of the following functions

$$
\begin{aligned}
a(x)=\frac{1}{\ln \left(x^{2}-y\right)}, & b(x)=\sqrt{\frac{x+y}{x-y}} \\
c(x)=\sqrt{2-|x+y|}, & d(x)=\sqrt{x^{2}+x y+1} \\
e(x)=\sqrt{\frac{1-|x|}{|y|-1},} & f(x)=x-\frac{3}{y}+\ln (x-3 y)
\end{aligned}
$$

2. Determine and sketch contour lines at heights $-2,-1,0,1,2$ of

$$
\begin{aligned}
a(x)=x^{2}+y, \quad b(x)=x^{2}-y^{2} \\
c(x)=|x|+|2-y|, \quad d(x)=\frac{1}{1+x^{2}+y^{2}} \\
e(x)=\frac{x+1}{y-2}, \quad f(x)=\frac{x^{2}+y^{2}}{2 x+y} .
\end{aligned}
$$

4.2 Topology

1. Find the boundary of

$$
M=\left\{(x, y) \in \mathbb{R}^{2}, x>y, y>x^{2}\right\} .
$$

2. Determine whether

$$
M=\left\{(x, y) \in \mathbb{R}^{2}, x^{2}>y, y>1\right\}
$$

is open or closed.

4.3 Limit and continuity

1. Examine

$$
\begin{aligned}
\lim _{(x, y) \rightarrow(0,0)} \frac{2 x y}{3 x^{2}+y^{2}}, & \lim _{(x, y) \rightarrow(0,0)} \frac{4 x y^{2}}{x^{2}+3 y^{4}} \\
\lim _{(x, y) \rightarrow(2,1)} \frac{(x-2)(y-1)}{(x-2)^{2}+(y-1)^{2}}, & \lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{3}+y^{3}} \\
\lim _{(x, y) \rightarrow(a, a)} \frac{x^{4}-y^{4}}{x^{3}-y^{3}}, a \in \mathbb{R}, & \lim _{(x, y) \rightarrow(0,0)} \frac{\sin (x y)}{x+y} \\
\lim _{(x, y) \rightarrow(0,0)} \frac{5 x^{2} y^{2}}{x^{2}+y^{2}}, & \lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-y^{2}}{x^{2}+y^{2}}
\end{aligned}
$$

4.4 Derivatives

- Compute the derivative of f with respect to direction v at point $\left(x_{0}, y_{0}\right)$ where

1. $f(x, y)=x^{2}+2 y, v=\left(\frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right),\left(x_{0}, y_{0}\right)=$ $(-1,0)$,
2. $f(x, y)=y^{2} \sin x, v=\left(\frac{3}{5}, \frac{4}{5}\right),\left(x_{0}, y_{0}\right)=(2,5)$,
3. $f(x, y)=x+e^{x y}, v=\left(\frac{12}{13}, \frac{5}{13}\right),\left(x_{0}, y_{0}\right)=(0,0)$.

- Compute first partial derivatives of the following functions

$$
\begin{aligned}
a(x, y)=e^{x\left(y^{2}+x y\right)}, \quad b(x, y)=\left(x^{2}+y\right) \sin x \\
c(x, y, z)=\frac{x e^{y}}{z+x}, \quad d(x, y)=\left(x^{2}+3 x y\right)^{\ln (x y)} \\
e(x, y)=\left(x^{2}+2 y\right) \cos (x y), \quad f(x, y)=\frac{(2 x-3 y)^{5}}{x^{2}-1}
\end{aligned}
$$

3. Let

$$
f(x, y)=\frac{x^{2}+y}{x+y^{2}}
$$

Find its cross-section along the line

$$
p:(x, y)=(1,1)+t(-2,1), t \in \mathbb{R}
$$

4. Write $g(t)=f\left(1+t, t^{2}\right)$ where

$$
f(x, y)=x^{2}+\sqrt{y}
$$

determine its domain and sketch its graph.
3. For every set given below, give one interior and one boundary point and determine whether the set is open or closed
(a) $A=\left\{(x, y) \in \mathbb{R}^{2}, \frac{1}{4}(x-1)^{2}+\frac{1}{9}(y-3)^{2} \leq 1\right\}$
(b) $B=\left\{(x, y) \in \mathbb{R}^{2}, y \neq x^{2}\right\}$
(c) $C=\left\{(x, y) \in \mathbb{R}^{2}, x^{2}+y^{2}=1\right\}$
(d) $D=\left\{(x, y) \in \mathbb{R}^{2}, y>\sin x\right\}$
2. Compute

$$
\lim _{x \rightarrow 0}\left(\lim _{y \rightarrow 0} \frac{x y+\sin (x y)}{x y}\right), \quad \lim _{y \rightarrow 0}\left(\lim _{x \rightarrow 0} \frac{\left(x^{2}-2 x y+y^{2}\right)}{x y}\right)
$$

- Compute ∇^{2} of the following functions

$$
\begin{aligned}
a(x, y)=x^{y}, \quad b(x, y)=\frac{x^{2}}{y} \\
c(x, y, z)=\frac{x+y}{y+z}, \quad d(x, y)=\frac{\sqrt{x}}{y^{2}+1} \\
e(x, y)=x \sqrt{x^{2}+y^{2}}, \quad f(x, y)=\left(x^{2}+y^{2}\right)^{-2}(x-y)^{3}
\end{aligned}
$$

- Write the tangent plane to the graph of function

$$
f(x, y)=\frac{1}{\sqrt{x^{2}+y}}
$$

at point $\left(x_{0}, y_{0}\right)=(2,5)$.

- Write the tangent plane to the graph of function

$$
f(x, y)=\frac{\ln (x+3 y)}{(x-1) y}
$$

at point $\left(x_{0}, y_{0}\right)=(-2,1)$.

- Let $f(x, y)=x \sin \left(x+y^{2}\right)$. Let $x(t)=t^{2}+t$ and $y(t)=e^{t} \ln t$. Compute

$$
\frac{\partial}{\partial t} f(x(t), y(t))
$$

- Write the second order Taylor polynomial at point $(1,1)$ for

$$
f(x, y)=\ln \left(2 y-x^{2}\right)
$$

- Use the second order Taylor polynomial to deduce an approximate value of

$$
2^{(1.9)^{2}+(0.12)^{2}}
$$

- Write the second order Taylor polynomial at point $(-1,1,2)$ for

$$
f(x, y, z)=x^{2}+(2 x y)(z+3) .
$$

- Use the second order Taylor polynomial to deduce an approximate value of

$$
\sqrt{(2.1)^{2}+(1.9)^{2}+(1.1)^{2}}
$$

