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1 Numbers, sets, and functions

1.1 Logic

A proposition is such sentence that we can decide about its correctness, i.e., whether it is true
or false. For example:
– ’three plus four’ is not a proposition,
– ’three plus four is six’ is a proposition (obviously wrong). This proposition is atomic (ele-
mentary) – it cannot be decomposed. – ’three plus four is seven and one plus one is three’ is
a proposition as well, however, this proposition is not atomic since it can be decomposed into
a proposition ’three plus four is seven’, into another proposition ’one plus one is three’ and a
connective ’and’.

How to make non-atomic propositions
Propositions may be joined into new proposition by using logical connectives:

• conjunction - and - &: ’three plus four is seven and one plus one is three’ is an example of a
conjunction of two propositions, proposition A =’three plus four is seven’ and proposition
B =’one plus one is three’. It may be written as A&B. The whole conjunction is false.
Nevertheless, if we replace B by C =’one plus one is two’, then A&C will be true – the
conjunction is true only if both propositions are true.

• disjunction - or - ∨: Using the same notation as above, we understand A ∨ B as ’three
plus four is seven or one plus one is three’. This time, the proposition A ∨B is true – the
disjunction is true once there is at least one true proposition.

• implication - if ... then - ⇒: ’if sun shines then it is hot’ – here we have two elementary
propositions D =’sun shines’ and E =’it is hot’. The implication D ⇒ E is false only in
case the sun shines and, simultaneously, it is not hot. The implication is true in all other
cases.

• equivalence - if and only if - ⇔

• negation - it is not true that ... - ¬: ’it is not true that sun shines’, or, with the above
notation, ¬D. Note that this particular negation might be abbreviated as ’the sun does
not shine’. It holds that ¬¬A = A.

The summary is provided by the following table

A B A&B A ∨B A⇒ B A⇔ B ¬A
true true true true true true false
true false false true false false false
false true false true true false true
false false false false true true true

- Some rules (including the De Morgan laws):
A⇒ B is the same as (¬A) ∨B
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¬(A ∨B) is the same as (¬A)&(¬B)
¬(A&B) is the same as (6= A) ∨ (¬B)
as a result of the previous lines we deduce that ¬(A⇒ B) is A&¬B.

Quantifiers
Existential quantifier ∃ is read as ’there is’ or ’there exists’. For example, ’there exists a natural
number n such that 2n = 5’ can be written by use of symbols as ∃n ∈ N, 2n = 5 (here N denotes
a set of all natural numbers – see the next subsection). We just remark that this statement is
false.
Universal quantifier ∀ is read as ’for all’ or ’every’. For example ’every unicorn can breath under
water’. The first two words of this sentence might be shortened to ∀u ∈ U where U denotes a
set of all unicorns. Let us remark that the above statement is true – every proposition is true
assuming it tackles all individuals from an empty set, here we tacitly assume that unicorns do
not exist.

1.2 Sets

The sets are given by one of the following ways:

• list of elements: M = {1, 2, 3, 4} is a set containing numbers 1, 2, 3 and 4.

• a condition (or more conditions): M = {w is a word containing exactly five letters} or
M = {w is a word containing exactly five letters, w is a noun}.

Definition 1.1. Let X and Y be two sets. By X ∪ Y we denote a union of sets X and Y which
is a set containing elements of both sets, i.e.,

X ∪ Y = {x, (x ∈ X) ∨ (x ∈ Y )}.

By X ∩ Y we denote an intersection of sets X and Y which is a set consisting of elements
belonging simultaneously to both sets, i.e.,

X ∩ Y = {x, (x ∈ X)&(x ∈ Y )}.

The Cartesian product X × Y is a set of all ordered couples such that the first component
belongs to X and the second to Y . Namely,

X × Y = {〈x, y〉, (x ∈ X)&(y ∈ Y )}.

We say that X is a subset of Y if every element of X is in Y . The notation is X ⊂ Y and
we may write

X ⊂ Y ⇔ ((x ∈ X)⇒ (x ∈ Y )).

Sets X and Y are equal if X ⊂ Y and simultaneously Y ⊂ X.
Let X ⊂ Y . By Y \X we understand a set of all elements in Y which are not in X, i.e.,

Y \X = {(y ∈ Y )&(y /∈ X)}.

Hereinafter, the empty set is denoted by ∅.
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1.3 Numbers

We will use the following notation for numbers: N stands for natural numbers, Z denotes integers,
Q is a set of all rational numbers and R denotes the set of all real numbers. Namely:

N = {1, 2, . . .}

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}

Q =

{
. . . ,

1

2
,
−3

2
,

5

2
, . . .

}
Q is a field. Namely, there are two operations + and · fulfilling

• ∀x, y, z ∈ Q, x+ (y + z) = (x+ y) + z, x · (y · z) = (x · y) · z (associativity)

• ∀x, y ∈ Q, x+ y = y + x, x · y = y · x (commutativity)

• ∃0 ∈ Q, ∀x ∈ Q, x+ 0 = x (there is null)

• ∃1 ∈ Q, ∀x ∈ Q, x · 1 = x (there is one)

• ∀x ∈ Q, ∃ − x ∈ Q, x+ (−x) = 0 (there is an opposite number)

• ∀x ∈ Q \ {0}, ∃x−1, x · x−1 = 1 (there is an inverse number)

• ∀x, y, z ∈ Q, x · (y + z) = x · y + x · z (distributivity)

The set R is also a field, which is totally ordered and it containes supremum and infimum of
every of its subset. Therefore, to properly states basic properties of all real numbers R we first
define a totally ordered set as well as supremum and infimum:

Definition 1.2. We say that a set X is totally ordered if there is a relation ≤ fulfilling

• ∀x, y ∈ X, (x ≤ y) ∨ (y ≤ x).

• ∀x, y ∈ X, ((x ≤ y)&(y ≤ x))⇒ x = y.

• ∀x, y, z ∈ X, ((x ≤ y)&(y ≤ z))⇒ (x ≤ z).

Further, we define relation < as x < y ⇔ (x ≤ y&x 6= y).

R is a totally ordered field which, moreover, satisfies

• ∀x, y, z ∈ R, (x < y)⇒ (x+ z < y + z)

• ∀x, y ∈ R and z > 0, (x < y)⇒ (z · x < z · y)

Remark 1.1. Simply, x ≥ y is the same as y ≤ x and x > y is the same as y < x.

Definition 1.3. Let A ⊂ R. We define a supremum (or least upper bound, abbreviated as LUB)
of A, supA, as a number M ∈ R fulfilling

∀x ∈ A, (x ≤M)&(∀ε > 0,∃x ∈ A, x+ ε > M)

Similarly, we define infimum (or greatest lower bound, abbreviated as GLB) of A, inf A, as a
number m ∈ R fulfilling

∀x ∈ A, (x ≥ m)&(∀ε > 0,∃x ∈ A, x− ε < m).
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Define inf ∅ = +∞ and sup ∅ = −∞. Previous definition allows to state the last property of
real numbers which is: ∀A ⊂ R, ∃M ∈ R∗, M = supA. That is the way how we get the extended
real numbers – denoted by R∗ – since we add also numbers +∞ and −∞ – however that was not
intended. In order to get the demanded field of numbers we remove +∞ and −∞ as the very
last step. Thus R = R∗ \ {+∞,−∞}.

It is worth to mention that rational numbers do not posses this last property. Namely,
√

2 is
real number, since it can be defined as

√
2 = sup{x, x2 ≤ 2}.

On the other hand,
√

2 is not a rational number. Indeed, let
√

2 = p
q for some p ∈ Z and

q ∈ N such that p and q do not have a common divisor (and thus it cannot be simplified). Then
(pq )2 = 2 which implies p2 = 2q2 and 2 is a divisor of p which can be written as p = 2l for some

l ∈ Z. We put it into the last equality to get 4l2 = 2q2 yielding 2l2 = q2 and 2 is a divisor of q.
Thus p and q have a common divisor 2 which is a contradiction with our assumption.

Definition 1.4. Let a, b ∈ R∗, a < b. An open interval (a, b) is defined as (a, b) = {x ∈ R, a <
x < b}. Let a, b ∈ R, a < b. A closed interval [a, b] is defined as [a, b] = {x ∈ R, a ≤ x ≤ b}.
Further, we define half-open interval as follows: Let a ∈ R and b ∈ R∗ be such that a < b. Then
[a, b) = {x ∈ R, a ≤ x < b}. Let a ∈ R∗ and b ∈ R. Then (a, b] = {x ∈ R, a < x ≤ b}.

1.4 Few words about proofs

A mathematical theorem (lemma, observation) are usually of the form A⇒ B where A denotes
the assumptions of a theorem and B denotes the claims of the theorem. The methods of proof
of such implication is the following:

• Direct. To prove A⇒ B, we present a set of implications which starts from A and end up
in B.
Example: Let a > 1, then a2 > 1. Proof: (a > 1)⇒ (a > 0)⇒ (a2 > a > 1)⇒ (a2 > 1).

• Indirect. Rather than proving A⇒ B, we prove ¬B ⇒ ¬A.
Example: Let a, b ∈ R and let ab = 0. Then either a = 0 or b = 0. Proof: we show that
(a 6= 0)&(b 6= 0) implies ab 6= 0. Let a > 0 and b > 0. Then ab > 0. In other cases we
proceed similarly, for example if a < 0 and b > 0, then we use the previous argument for
−a and b.

• Contradiction. Instead of proving A ⇒ B, we show that A&¬B yields contradiction and
thus cannot occur. For example a claim

√
2 /∈ Q which was presented in the previous

subsection.

• Mathematical Induction – special kind of proof, the rest of this subsection is devoted to
this.

Mathematical induction
is a method how to prove an assertion V (n) for every n ∈ N. (For example, let n ∈ N and let

V (n) be ’it holds that
∑n
i=1 i = n(n+1)

2 ’.)
Math induction helps to prove that V (n) holds for every n ∈ N. It consists of two steps:

1. V (1) holds.

2. for every k ∈ N it holds that V (k)⇒ V (k + 1).
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Example:

We prove that
∑n
i=1 i = n(n+1)

2 . First, we show the validity of this equality for n = 1. In this
case we have

L = 1 =
1 · 2

2
= R.

To verify the second step, assume that for an arbitrary k ∈ N the assertion holds true. We intent
to prove that (

k∑
i=1

i =
k(k + 1)

2

)
⇒

(
k+1∑
i=1

i =
(k + 1)(k + 2)

2

)
To prove the last equality, let start with its left hand side and show it is equal to the right hand
side (by using the assumption). We have

L =

k+1∑
i=1

i =

k∑
i=1

i+ k + 1 =
k(k + 1)

2
+ k + 1 =

k(k + 1)

2
+

2(k + 1)

2
=

(k + 2)(k + 1)

2
= R.

1.5 Mappings

Definition 1.5. Let f ⊂ (X × Y ) be a subset which fulfills for every x ∈ X and y1, y2 ∈ Y that

((〈x, y1〉 ∈ f)&(〈x, y2〉 ∈ f))⇒ (y1 = y2).

Then we say that f is a mapping which maps X to Y . We write f : X → Y . A usual notation
for 〈x, y〉 ∈ f is f(x) = y or f : x 7→ y.

A domain is a set of all x ∈ X for which there exists y such that f(x) = y. The domain of
f is denoted by Dom f . The set of all y ∈ Y for which there exists x ∈ X such that f(x) = y is
called range. It is denoted by Ran f .

Let A ⊂ Dom f . An image of A (denoted by f(A)) is a set in Ran f defined as

f(A) = {y ∈ Y, ∃x ∈ A, y = f(x)}.

Let B ⊂ Ran f . A preimage of B (denoted by f−1(B)) is a set in Dom f defined as

f−1(B) = {x ∈ X, ∃y ∈ B, y = f(x)}.

Remark 1.2. Usually, if X and Y are number sets (N, Z, Q, or R), then f is called a function.
Nevertheless, we will often use the term ’function’ also for mappings.

Example: Let f = {〈3, 1〉, 〈1, 2〉, 〈2, 2〉}. We have Dom f = {1, 2, 3}, Ran f = {1, 2}. On the
other hand, let g = {〈1, 3〉, 〈2, 1〉, 〈2, 2〉}. Now g is not a function because we have one value of
x (x = 2) which is mapped to two different values of y (either y = 1 or y = 2). This contradicts
the very first property of the definition.

Observation 1.1. For every A, B ⊂ Dom f it holds that

f(A ∪B) = f(A) ∪ f(B)

Proof. It holds that

(y ∈ f(A ∪B))⇒ (∃x ∈ (A ∪B), y = f(x))⇒ ((∃x ∈ A, y = f(x)) ∨ (∃x ∈ B, y = f(x)))

⇒ ((y ∈ f(A)) ∨ (y ∈ f(B)))⇒ (y ∈ f(A) ∪ f(B))
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and we have just proven that f(A ∪B) ⊂ (f(A) ∪ f(B)).
On the other hand

(y ∈ f(A) ∪ f(B))⇒ ((y ∈ f(A)) ∨ (y ∈ f(B)))⇒ ((∃x ∈ A, y = f(x)) ∨ (∃x ∈ B, y = f(x)))

⇒ (∃x ∈ (A ∪B), y = f(x))⇒ (y ∈ f(A ∪B))

which yields (f(A) ∪ f(B)) ⊂ f(A ∪B). This concludes the proof.

Definition 1.6. A function f : X 7→ Y is said to be

• injective if ∀x1, x2 ∈ Dom f , f(x1) = f(x2)⇒ x1 = x2,

• surjective if Ran f = Y ,

• bijective if it is surjective and injective.

We use a term injection (resp. surjection or bijection) for injective (resp. surjective of bijective)
function.

Example: Let consider the mapping from the previous example, i.e., f = {〈3, 1〉, 〈1, 2〉, 〈2, 2〉}.
This function is not injective since f(1) = 2 as well as f(2) = 2. On the other hand, when taking
Y = {1, 2}, then f is sufjective.

Definition 1.7. Let f : X → Y and let g : Y → Z be such that Ran f ⊂ Dom g. Then a
composition of functions g and f is a function g ◦ f : X → Z defined as

(g ◦ f)(x) = g(f(x)).

If there is a function g : Y → X such that Dom f = Ran g, Dom g = Ran f , (g ◦ f)(x) = x for
all x ∈ Dom f then g is called an inverse function to f and we denote it by f−1. An invertible
function is a function for which there exists the inverse function.

Example: Take the function f from the previous example and consider a function h given as

h = {〈1, 5〉, 〈2, 8, 〉}.

Since Dom h = {1, 2} = Ran f , we may write down a function h ◦ f (or, equivalently h(f(x)).
We have

h(f(3)) = 5, h(f(1)) = 8, h(f(2)) = 8.

The function f from the previous example is not invertible since it is not injective. Take a
function j defined as

j = {〈1, 4〉, 〈2, 1〉, 〈3, 7〉, 〈4, 10〉}.

The function h is injective and it is surjective assuming Y = {1, 4, 7, 10}. Thus there exists j−1

and it is a function
j−1 = {〈1, 2〉, 〈4, 1〉, 〈7, 3〉, 〈10, 4〉}.

Observation 1.2. It holds that Dom f = Ran f−1 and Ran f = Dom f−1 whenever f is an
invertible function.

Proof. Obvious.

Recall that a function f(x) = x is often called identity and that not every function has its
inverse. Moreover, f ◦ g is also an identity.
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Observation 1.3. Let f : X → Y , Dom f = X. The inverse function f−1 exists if and only if
f is injective.

Proof. Let f be injective. Thus, for every y ∈ Ran f there exists only one x ∈ Dom f such that
y = f(x). It suffices to define f−1(y) = x.

Let f be not injective. There exist x1, x2 ∈ Dom f and y ∈ Ran f such that x1 6= x2
and f(x1) = f(x2) = y. Let f−1(y) = x1 – this is necessary to have f−1(f(x1)) = x1. Then
f−1(f(x2)) = f−1(y) = x1 6= x2 and thus f−1 is not an inverse function.

Definition 1.8. An indicator function of a set A ⊂ X is a function f : X 7→ {0, 1}, Dom f = X
fulfilling f(x) = 1 if and only if x ∈ A. Such function is denoted by χA.

Definition 1.9. We say that f : X 7→ R is bounded from above if there is M ∈ R such that
f(x) ≤M for each x ∈ Dom f . It is bounded from below if there is m ∈ R such that f(x) ≥ m
for every x ∈ Dom f . We say that f is bounded if f is bounded from above and from below.

1.6 Exercises

1. Show that 1 > 0.

2. Show that sup(0, 2) = sup[0, 2] = 2.

3. Find supA and inf A of A =
{

1
n

}∞
n=1

(i.e., a set A =
{

1, 12 ,
1
3 ,

1
4 ,

1
5 , . . .

}
).

4. Which of these subsets of N× N is a function?

(a) f = {〈1, 5〉, 〈2, 4〉, 〈1, 3〉}
(b) g = {〈1, 2〉, 〈5, 3〉, 〈10, 1〉}
(c) h = {〈3, 3〉, 〈4, 3〉, 〈7, 7〉, 〈10, 3〉}

5. Consider a function h defined in the previous exercise. Write Dom h and Ran h.

6. Does the following modification of Observation 1.1

∀A,B ⊂ Dom f, f(A ∩B) = f(A) ∩ f(B)

hold? If yes, prove it. If no, try to think for which functions does it hold.

7. Let f, g : N 7→ N be defined as

f = {〈2, 2〉, 〈3, 2〉, 〈4, 6〉, 〈1, 3〉}
g = {〈2, 3〉, 〈3, 2〉, 〈6, 2〉}

Write f ◦ g and g ◦ f .

8. Let f be an invertible function. Show that f−1 is determined uniquely.
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2 Real functions

By a real function we mean a function f : R 7→ R.

Definition 2.1. A graph of a function f is a subset of plane consisting of points 〈x, f(x)〉 where
x ∈ Dom f .

Consider a function f = {〈1, 0〉, 〈−1, 3〉, 〈0,−2〉}. Its graph looks as follows

x

y

1-1

3

-2

It is worth pointing out that Dom f = {−1, 0, 1} and Ran f = {−2, 0, 3}.
A graph of function f = 2χ(−1,1) − 2χ{−1,1} + χ[1,∞) is

x

y

1-1

Definition 2.2. Let f : R 7→ R and I ⊂ Dom f be an interval. We say that f is on I

• increasing if ∀x1, x2 ∈ I, (x1 < x2)⇒ f(x1) < f(x2),

• decreasing if ∀x1, x2 ∈ I, (x1 < x2)⇒ f(x1) > f(x2),

• non-decreasing if ∀x1, x2 ∈ I, (x1 < x2)⇒ f(x1) ≤ f(x2),

• non-increasing if ∀x1, x2 ∈ I, (x1 < x2)⇒ f(x1) ≥ f(x2).

If f posses one of these properties we will say that f is monotone.

Definition 2.3. A function f : R 7→ R is called periodic, if there is a number l > 0 such that
f(x) = f(x + l) for all x ∈ R. The least number l with that property is called a period of a
function f and f is then l−periodic.
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Definition 2.4. A function f : R 7→ R is said to be continuous at a point x0 ∈ Dom f if

∀ε > 0, ∃δ > 0, ∀x ∈ (x0 − δ, x0 + δ) ∩Dom f, |f(x)− f(x0)| < ε.

A function f : R 7→ R is said to be left-continuous (resp. right-continuous) at a point x0 ∈ Dom f
if

∀ε > 0, ∃δ > 0, ∀x ∈ (x0 − δ, x0) ∩Dom f, |f(x)− f(x0)| < ε

(resp. ∀ε > 0, ∃δ > 0, ∀x ∈ (x0, x0 + δ) ∩Dom f, |f(x)− f(x0)| < ε)

We say that f is continuous on a set S ⊂ R if it is continuous at all of its points.

We define a function sgn (x) = χ[0,∞) − χ(−∞,0) – the function is called ’signum’ or ’sign’,
it is equal to −1 for x negative and 1 otherwise. This function is not continuous at x0 = 0.
However, it is right-continuous at 0. Indeed, let ε = 1

2 . Then for every δ > 0, − δ2 ∈ (−δ, δ) and∣∣∣∣sgn

(
−δ

2

)
− sgn (0)

∣∣∣∣ = | − 1− 1| = 2 >
1

2
.

On the other hand, for every ε > 0 we can state (for example) δ = ε and then for every x ∈ (0, δ)
it holds that sgn (x) = 1 = sgn (0) and thus |sgn (x)− sgn (0)| = 0 < ε.

Before we go on let us recall the triangle inequality

|a+ b| ≤ |a|+ |b|

which holds true for all a, b ∈ R. We immediately deduce that, also,

|a| − |b| ≤ |a− b|.

Observation 2.1. Let f and g be functions continuous at x0. Then also f(x) ± g(x) and

f(x) · g(x) are continuous at x0. Moreover, if g(x0) 6= 0 then f(x)
g(x) will be continuous at x0.

Proof. Proof: We prove it for f + g as f − g can be done similarly. Due to continuity we have
∀ε > 0 ∃δ1 > 0 and δ2 > 0 such that |f(x) − f(x0)| < ε

2 and |g(x) − g(x0)| < ε
2 whenever

|x− x0| < δ. But this means that (due to the triangle inequality)

|f(x) + g(x)− (f(x0) + g(x0))| < |f(x)− f(x0)|+ |g(x)− g(x0)| < ε.

Now we turn our attention to the product rule. First of all, since f(x0) is real and the function
is continuous, there exists δ1 > 0 and M1 > 0 such that |f(x)| < M1 whenever x ∈ (x0 −
δ1, x0 + δ1) ∩Dom f (see exercises at the end of this section). Similarly, there exists δ2 > 0 and
M2 > 0 such that |g(x)| < M2 whenever x ∈ (x0 − δ2, x0 + δ2) ∩ Dom f . Due to continuity, for
all ε > 0 there exists δ > 0 such that |f(x) − f(x0)| < ε

2M2
and |g(x) − g(x0)| < ε

2M1
for all

x ∈ (x0 − δ, x0 + δ). We may moreover assume that δ < min{δ1, δ2}. Then we have

|f(x)g(x)− f(x0)g(x0)| = |f(x)(g(x)− g(x0)) + g(x0)(f(x)− f(x0))|
≤ |f(x)||g(x)− g(x0)|+ |g(x0)||f(x)− f(x0)| < ε

for all x ∈ (x0 − δ, x0 + δ).
To prove the last claim it suffices to show that 1

g is continuous at x0 and to use the just

proven product rule. Without loss of generality, assume that g(x0) > 0 and denote its value
by y0 = g(x0). Then, due to the continuity of g, there exists δ1 > 0 such that g(x) > y0

2

12



for all x ∈ (x0 − δ1, x0 + δ1) ∩ Dom g. Further, for each ε > 0 there exists δ > 0 such that
|g(x) − g(x0)| < y20

ε
2 for each x ∈ (x0 − δ, x0 + δ) and, moreover, we assume that δ < δ1. Then

we have ∣∣∣∣ 1

g(x)
− 1

g(x0)

∣∣∣∣ =

∣∣∣∣g(x0)− g(x)

g(x)g(x0)

∣∣∣∣ ≤ |g(x0)− g(x)|
y0

y0
2

< ε

for each x ∈ (x0 − δ, x0 + δ) ∩Dom g.

It is easy to deduce that f(x) ≡ c and f(x) = x are continuous on R.

Definition 2.5. We say that f is an odd function if

∀x ∈ Dom f, −x ∈ Dom f and f(−x) = −f(x).

We say that f is an even function if

∀x ∈ Dom f, −x ∈ Dom f and f(−x) = f(x).

2.1 Further comments on continuous functions

This section is devoted to advanced properties of continuous functions. They will be mentioned
without a proof which is usually not elementary.

Before that, we introduce a notion of a maximum and minimum of set A ⊂ R.

Definition 2.6. Let supA be an element of A ⊂ R. Then supA is the highest number of A (or
a maximum of A) and we write supA = maxA. Similarly, if inf A is an element of A, then
inf A will be the lowest number of A (or a minimum of A) and we write inf A = minA.

The minimum and maximum does not necessarily exists for a general set A ⊂ R. For
example, A =

{
1
n , n ∈ N

}
has maximum 1, however, minimum does not exists. The infimum 0

is not contained in this set.
Note also that every set A ⊂ R with finitely many elements has its maximum and minimum.

Definition 2.7. Let f be continuous on an interval I ⊂ R. Then we write f ∈ C(I).

Theorem 2.1 (Weierstrass). Let f ∈ C([a, b]). Then f is bounded and there exists t, u ∈ [a, b]
such that f(u) ≤ f(x) ≤ f(t) for all x ∈ [a, b].

Actually, the previous theorem states that every function which is continuous on a closed
interval attains its maximum and minimum value.

Theorem 2.2 (Bolzano). Let f ∈ C([a, b]) and f(a)f(b) < 0. Then there is η ∈ (a, b) such that
f(η) = 0.

Lemma 2.1. Let f be an odd function and (−a, a) ⊂ Dom f for some a > 0. Then f(0) = 0.

2.2 Elementary functions

Now we are in position where we can define and state basic properties of functions which will be
of use hereinafter.

13



2.2.1 Polynomials

Polynomials are function which arises from a constant function f ≡ c, c ∈ R and an identity func-
tion f(x) = x by finite number of multiplication and additions. In particular, every polynomial
is of the form

p(x) = anx
n + an−1x

n−1 + . . .+ a1x
1 + a0,

where n ∈ N and a0, . . . , an ∈ R. The numbers a0, . . . , an are called coefficients. The degree of
p(x) is n in a case an 6= 0 and we write deg p = n. The term anx

n is called a leading term.
Recall that p(x) = xn is odd function for odd n and it is an even function for n even. The
maximal domain of p(x) is always R. All x such that p(x) = 0 are called roots of polynomial p.
Let x0 be a root of p(x). Then p(x) = (x− x0)q(x) where q(x) is a polynomial and it holds that
deg p(x) = deg q(x) + 1.

2.2.2 Rational functions

A rational function is a fraction whose nominator and denominator are polynomials. I.e., a
rational function f is of the form

f(x) =
p(x)

q(x)
.

The domain of f is all real numbers except roots of q(x).

2.2.3 Exponential and logarithm

Consider a number a > 0. Let n ∈ N, we define an = a · a · . . . · a where a appears n times on
the right hand side. Further, we define a

1
n as such number b that bn = a. This allows to define

ar for all rational numbers r ∈ Q. Namely, let r > 0, we define ar = a
p
q = (ap)

1
q . For r < 0 we

take ar = 1
a−r . Finally, we are allowed to define uniqely a continuous function

f(x) = ax (1)

whose values are prescribed in the aforementioned way for all rational inputs. Since the function
is constant for a ≡ 1, we remove this particular base from our definition and we consider the
relation (1) only for a ∈ (0, 1) ∪ (1,∞). It holds that Dom f = R and Ran f = (0,∞). Further,
f(0) = 1 (roughly speaking, every number powered to 0 equals one). The function is strictly
increasing for a > 1 and strictly decreasing for a < 1. The picture below is a graph of a function
f(x) = ax for some a > 0.

14



x

y
f(x) = ax, a > 1

Since x 7→ ax is injective there exists an inverse function. We will denote it by loga and it is
called logarithm to base a. In particular

loga y = x ⇔ ax = y.

Recall that a ∈ (0, 1) ∪ (1,∞) and, due to the properties of the inverse functions, Dom loga =
(0,∞) and Ran loga = R. Recall also, that since a0 = 1, we have loga 1 = 0 for every a ∈
(0, 1) ∪ (1,∞).

The graph of f(x) = loga(x), a > 1 is the following

x

y
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Let e be Euler’s number (for its definition see relation (3)). The logarithm to base e is
called natural logarithm and, because of its importance, we omit the index e in its notation (i.e.
log x = loge x).

2.2.4 Irrational functions

Next, we define nth root f(x) = n
√
x as an inverse to g(x) = xn. Recall that g is invertible for n

odd and Dom g = Ran g = R. Thus, Dom n
√
x = Ran n

√
x = R for n odd.

However, g is not invertible for n even. In that case we have to restrict the domain of g to
[0,∞) in order to have an injective function. The range of this restricted function is also [0,∞).
As a consequence, Dom n

√
x = Ran n

√
x = [0,∞) for n even.

The nth root is always an increasing function.

2.2.5 Trigonometric functions

There is just one pair of continuous functions s(x) and c(x) with the following properties

• s(x)2 + c(x)2 = 1

• s(x+ y) = s(x)c(y) + c(x)s(y)

• c(x+ y) = c(x)c(y)− s(x)s(y)

• 0 < xc(x) < s(x) < x for all x ∈ (0, 1).

The function s is called sinus and the function c is called cosine. We also introduce notation
sinx = s(x) and cosx = c(x). These functions have the following properties:

• Dom sinx = Dom cosx = R, Ran sinx = Ran cosx = [−1, 1].

• sinx is an odd function, cosx is an even function.

• sinx and cosx are 2π periodic function.

There are several ’known’ values of sin and cos:
x = 0 π

6
π
4

π
3

π
2 π 3

2π

sinx 0 1
2

√
2
2

√
3
2 1 0 −1

cosx 1
√
3
2

√
2
2

1
2 0 −1 0

Besides, we define a function tanx = sin x
cos x (tangens) and a function cotx = cos x

sin x (cotangens).
These functions are π−periodic, their range is R and

Dom tanx = R \
{π

2
+ kπ, k ∈ Z

}
, Dom cotx = R \ {kπ, k ∈ Z} .

2.2.6 Cyclometric functions

Roughly speaking, cyclometric functions are inverse functions to the aforementioned trigonomet-
ric functions. However, every trigonometric function is periodic and thus it is not one-to-one.
To obtain the inverse function, we have to restrict the domain of every trigonometric function.
In particular, we define functions sinr, cosr, tanr and cotr as follows

sinr x = sinx, Dom sinr = [−π2, π2]

cosr x = cosx, Dom cosr = [0, π]

tanr x = tanx, Dom tanr = [−π2, π2]

cotr x = cotx, Dom cotr = [0, π]
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Now, since these functions are injective, we may define

arcsin = sin−1r

arccos = cos−1r

arctan = tan−1r

arccot = cot−1r

Let write down several properties of each function:

• Dom arcsin = [−1, 1], Ran arcsin =
[
−π2 ,

π
2

]
, arcsin is an increasing function and arcsin(−1) =

−π2 , arcsin(0) = 0 and arcsin(1) = π
2

• Dom arccos = [−1, 1], Ran arccos = [0, π], arccos is a decreasing function and arccos(−1) =
π, arccos(0) = π

2 and arccos(1) = 0.

• Dom arctan = R, Ran arctan =
(
−π2 ,

π
2

)
, arctan is an increasing function and arctan(0) =

0.

• Dom arccot = R, Ran arccot = (0, π), arccot is a decreasing function and arccot(0) = π
2 .

2.3 Exercises

1. Try to think about the following statement: If both functions f(x) and g(x) are not mono-
tone on R, then their sum f(x) + g(x) is not monotone on R.

Prove if it is true, find a counterexample if it is false.

2. If a function is not monotone, then it does not have an inverse function. It is true or false?
And why?

3. Let f be increasing invertible function. Show that f−1 is also increasing. Consider also
the case of decreasing invertible function.

4. Use a definition of continuity in order to proof that a function f(x) = x2χ(−1,1) + χ[1,3] is
continuous in x0 = 1.

5. Determine all points of continuity of a function f(x) = xχQ − xχR\Q.

6. Find all roots of p(x) = x3 − 6x2 + 11x− 6.

7. Let f be continuous at x0. Then there exists δ > 0 and M > 0 such that |f(x)| < M for
every x ∈ (x0 − δ, x0 + δ) ∩Dom f . Prove or disprove this claim.

8. Deduce the values of sinx and cosx for x = 2
3π, 3

4π, 5
6π, 7

6π, 5
4π, 4

3π, 5
3π, 7

4π, 11
6 π.

3 Sequences and their limits, introduction

Definition 3.1. A function a : N 7→ R, Dom a = N is called sequence. We write an instead of
a(n). The whole function is then denoted {an}∞n=1.

17



For example, an = 1
n is a sequence of numbers {1, 12 ,

1
3 ,

1
4 , . . .}. Sequence bn = 2n is a sequence

of numbers {2, 4, 8, 16, 32, . . .}. Note also that the first sequence can be written as
{

1
n

}∞
n=1

and
the second one as {2n}.

Note that the sequence is actually a real function as considered in the previous chapter whose
domain is a set of natural numbers. Thus, one can talk about boundedness and monotony in
means of Definitions 1.9 and 2.2. Nevertheless, let recall a definition of a monotonous sequence
which is more convenient for use then Definition 2.2.

Definition 3.2. A sequence an is called

• increasing, if an+1 > an for all n ∈ N,

• decreasing, if an+1 < an for all n ∈ N,

• non-increasing, if an+1 ≤ an for all n ∈ N,

• non-decreasing, if an+1 ≥ an for all n ∈ N.

A sequence, which posses one of these properties is monotonous.

Definition 3.3. Let an be a sequence. A number A ∈ R is called a limit of an if

∀ε > 0, ∃n0 ∈ N, ∀n ∈ N, n > n0, |an −A| < ε.

We then write lim an = A.
A limit of an is +∞ if

∀M > 0, ∃n0 ∈ N, ∀n ∈ N, n > n0, an > M

and we write lim an = +∞.
A limit of an is −∞ if lim−an = +∞.

Observation 3.1. Let an be a sequence and let A ∈ R∗ be its limit. Then it is determined
uniquely.

Proof. Let there be two numbers A,B ∈ R, A 6= B (here we assume, for simplicity, that both
numbers are real, for other cases see exercises) and let lim an = A and lim bn = B. Take
ε = 1

3 |A−B|. According to definition, there exists n0 such that |an −A| < ε for all n > n0 and
there exists n1 such that |an −B| < ε for all n > n1. Take n > max{n0, n1}. Then

|A−B| = |A− an + an −B| ≤ |A− an|+ |B − an| < ε+ ε < 3ε = |A−B|

which is of course a contradiction.

Consider a sequence an = 1
n . We claim that lim an = 0. Indeed, let ε > 0 be an arbitrary

number. Take n0 ∈ N such that n0 >
1
ε . Then for all n > n0 we have∣∣∣∣ 1n − 0

∣∣∣∣ =
1

n
<

1

n0
< ε.

Next, consider a sequence an = n (i.e. a sequence {1, 2, 3, . . .}). We claim that lim an = ∞.
To prove this, let M > 0 be an arbitrary number. Take a natural number n0 such that n0 > M .
Then for all n > n0 we have an = n > n0 > M .
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Lemma 3.1 (Arithmetic of limits). Let an and bn be sequences and let c ∈ R. Then

lim (an ± bn) = lim an ± lim bn

lim (anbn) = lim an · lim bn

lim can = c lim an

lim
an
bn

=
lim an
lim bn

assuming the right hand side has meaning.

To make the lemma complete we specify what is the ’meaning of the right hand side’. Besides
the usual division by zero there are several others indefinite terms

∞−∞, ∞
∞
, 0 · ∞, 0

0
, 1∞, ∞0, 00

which do not have any meaning. We also recall that 1
∞ = 0.

Proof. Here we proof only a simplified version of this claim as we will assume that lim an = A ∈ R
and lim bn = B ∈ R. Further, as the proof does not differ from the one of Observation 2.1, we
consider only lim(an + bn) = lim an + lim bn. Take ε > 0 arbitrarily. Since lim an = A and
lim bn = B there exists n0 ∈ N such that |an −A| < 1

2ε and |bn −B| < 1
2ε. Consequently,

|an + bn −A−B| ≤ |an −A|+ |bn −B| < ε

and we have just verified that A+B is a limit of an + bn.

Let compute several limits. First of all, we will prove that lim qn = ∞ for q > 1. Thus, we
have to show that for every M there is n0 such that qn > M . In this case, it is enough to take
such natural number n0 that n0 > logqM . Then, necessarily, qn > qn0 > qlogqM > M since
f(x) = qx is increasing.

Next, we compute limn2 − n. One may try to write limn2 − n = limn2 − limn = ∞−∞.
However, the last term is an indefinite term and the arithmetic of limit cannot be used in such
way. We will proceed as follows

limn2 − n = limn2
(

1− 1

n

)
= limn2

(
1− lim

1

n

)
=∞(1− 0) =∞.

The general rule how to compute a limit of ’rational sequence’ is to divide by the highest power
of n appearing in the denominator. Let demonstrate this (in both cases we use the arithmetic
of limits):

lim
n+ 1

n2 + 3
= lim

1
n + 1

n2

1 + 3
n2

=
0 + 0

1 + 0
= 0,

lim
n3 + 3n2

3n3 + n2
= lim

1 + 3 1
n

3 + 1
n

=
1 + 3 · 0

3 + 0
=

1

3
.

Let compute a limit lim qn with q ∈ (0, 1). By use of the arithmetic of limits and the previous
claim we compute

lim qn = lim

(
1
1
q

)n
=

1

lim
(

1
q

)n =
1

∞
= 0.

Before the next observation let us recall that the notion of ’bounded sequence’ was already
defined. It follows from the definition of sequence (Definition 3.1 – in particular it is a function
whose domain is N) and from the definition of a bounded function (Definition 1.9).
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Observation 3.2. Let an be a sequence with real (finite) limit A. Then an is a bounded sequence.

Proof. Indeed, take (for instance) ε = 1. There exists n0 ∈ N such that {an}n>n0
is bounded

from above by A+ 1 and from below by A− 1. Next, {a1, a2, . . . , an0
} is a finite set and thus it

is bounded from above (say by M ∈ R) and from below by m ∈ R. Then, {an}∞n=1 is bounded
from above by max{M,A+ 1} and from below by min{m,A− 1}.

Lemma 3.2 (Sandwich lemma). Let an, bn, cn be such that an ≤ bn ≤ cn for all n ∈ N. Assume,
moreover, that lim an = lim cn = A ∈ R∗. Then lim bn exists and lim bn = A.

Proof. Take an arbitrary ε > 0. There exists n0 ∈ N such that for all n > n0 we have |an−A| < ε
and |cn −A| < ε. There may appear one of the following cases:

• A ≥ cn. In that case, |bn −A| ≤ |an −A| < ε.

• A ≤ an. In that case, |bn −A| ≤ |cn −A| < ε.

• A ∈ (an, cn). In that case, since bn ∈ [an, cn], we have |bn − A| < |an − cn| = |an − A +
A− cn| ≤ |an −A|+ |bn −B| < 2ε.

No matter which one is true, we have |bn − A| < 2ε and A is a limit of bn according to the
definition of limit.

Definition 3.4. Let an be a sequence and let k : N 7→ N be an increasing sequence of natural
numbers. Then akn is a subsequence.

Observation 3.3. Let an be a sequence such that lim an = A, A ∈ R∗. Then every subsequence
akn has a limit A.

Proof. Once again, we assume for simplicity that A ∈ R. For arbitrary ε > 0 there exists n0
such that |an − A| < ε. However, as kn is an increasing sequence of natural numbers, there
exists n1 ∈ N such that kn > n0 whenever n > n1. That means that for ever n > n1 we have
|akn −A| < ε. The proof is complete.

4 Limits of functions

4.1 Limits

Definition 4.1. A limit point of a set S ⊂ R is every point x0 ∈ R such that for every δ > 0 it
holds that ((x0 − δ, x0) ∪ (x0, x0 + δ)) ∩ S 6= ∅.

Consider, for example, S = (0, 1)∪{2}. The set of all its limit point is a closed interval [0, 1].
We are ready to define a limit of a function. First, we consider finite limits.

Definition 4.2. Let f : R 7→ R and let x0 be a limit point of Dom f . We say, that A ∈ R is a
limit of f at x0 if

∀ε > 0, ∃δ > 0, ∀x ∈ ((x0 − δ, x0) ∪ (x0, x0 + δ)) ∩Dom f, |f(x)−A| < ε.

We write
lim
x→x0

f(x) = A

Observation 4.1. Once the limit exists, it is determined uniquely.
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Proof. Let limx→x0 f(x) = A and limx→x0 f(x) = B for some different A,B ∈ R. Take ε =
1
3 |B−A|. According to the definition of a limit, there exists δ > 0 such that |f(x)−A| < ε and,
simultaneously, |f(x) − B| < ε for some x ∈ (x0 − δ, x0 + δ). We use the triangle inequality to
deduce

|A−B| = |A− f(x) + f(x)−B| ≤ |A− f(x)|+ |f(x)−B| ≤ 2

3
|A−B|.

Thus, the definition of the limit is correct.

Observation 4.2. Let f be a function continuous in a limit point x0 of Dom f . Then

lim
x→x0

f(x) = f(x0).

Proof. Let ε > 0 be arbitrary. As f is continuous, there exists δ > 0 such that |f(x)−f(x0)| < ε
whenever |x − x0| < ε, x ∈ Dom f . But that is exactly that δ which suits the definition of a
limit.

Here we would like to emphasize that every elementary function from the previous chapter is
continuous on its domain.

This is the first tool which allows a computation. For example

lim
x→3

x− 5 = −2.

Ok, that was too easy. Anyway, we may use it to simplify fractions. Consider for example

a function f(x) = x2+4x+3
x2−1 . This function is clearly not defined at points −1 and 1 and is

continuous everywhere else. Anyway, we may compute

lim
x→−1

x2 + 4x+ 3

x2 − 1
= lim
x→−1

(x+ 1)(x+ 3)

(x− 1)(x+ 1)
= lim
x→−1

x+ 3

x− 1
= −1

Definition 4.3. Let x0 be a limit point of Dom f . We say that A ∈ R is a left-sided limit of f
at x0 (resp. right-sided limit of f in x0) if

∀ε > 0, ∃δ > 0, ∀x ∈ (x0 − δ, x0) ∩Dom f, |f(x)−A| < ε.

(resp.
∀ε > 0, ∃δ > 0, ∀x ∈ (x0, x0 + δ) ∩Dom f, |f(x)−A| < ε.)

We write
lim

x→x0−
f(x) = A (resp. lim

x→x0+
f(x) = A).

A special case of the one-sided limit is a limit at infinity. This is defined as follows

Definition 4.4. Let for all K ∈ R there be x ∈ Dom f such that x > K. We say that A ∈ R is
a limit of f at ∞ if

∀ε > 0, ∃K ∈ R, ∀x > K, x ∈ Dom f, |f(x)−A| < ε.

We write limx→∞ f(x) = A.
We say that A is a limit of f(x) at −∞ if A is a limit of f(−x) at∞. We write limx→−∞ f(x) =
A.
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Besides that, we define also infinite limits

Definition 4.5. Let x0 be a limit point of Dom f . We say that +∞ is a limit of f at a point
x0 if

∀K > 0, δ > 0, ∀x ∈ ((x0 − δ, x0) ∪ (x0, x0 + δ)) ∩Dom f, f(x) > K.

We write limx→x0 f(x) = +∞.
We say that −∞ is a limit of f at x0 if limx→x0

−f(x) = +∞. We write limx→x0
f(x) = −∞.

Of course, one can define also one-sided infinite limits and infinite limits in infinity. We left
it to reader as an exercise.

The following observation is one of the most crucial tool for the computation of limits. We
call it ’arithmetic of limits’.

Lemma 4.1 (Arithmetic of limits). Let f, g : R 7→ R and let x0 be a limit point of Dom f and
Dom g. Let, moreover, c ∈ R. Then

lim
x→x0

(f(x)± g(x)) = lim
x→x0

f(x)± lim
x→x0

g(x)

lim
x→x0

cf(x) = c lim
x→x0

f(x)

lim
x→x0

(f(x)g(x)) = lim
x→x0

f(x) lim
x→x0

g(x)

lim
x→x0

f(x)

g(x)
=

limx→x0
f(x)

limx→x0 g(x)

(2)

assuming the right hand side has meaning.

Let recall that we compute with infinity once again. So this time we have the same indefinite
terms as previously, see Lemma 3.1.

We postpone the proof of this lemma to the next section.
Note that the arithmetic of limits holds also for the one-sided limits.
Let compute a limit limx→∞

x−1
x−2 . According to arithmetic of limits limx→∞ x− 1 =∞ and

limx→∞ x− 2 =∞. However, we cannot write that

lim
x→∞

x− 1

x− 2
=
∞
∞

as we get an indefinite term. The solution makes use of limx→∞
1
x = 0. This particular limit is

left as an exercise.

lim
x→∞

x− 1

x− 2
= lim
x→∞

1− 1
x

1− 2
x

=
1− 0

1− 2 · 0
= 1

where we first multiply the numerator and denominator by 1
x and, second, we use the arithmetic

of limits.

Observation 4.3. Let limx→x0
f(x) = A for some x0 ∈ R and A ∈ R∗. Then also limx→x0− f(x) =

A and limx→x0+ f(x) = A.

Once again, the proof of this observation is postponed to the next section.

Let consider limx→0
1
x . We are going to show that limx→0−

1
x = −∞ and limx→0+

1
x = +∞.

In such case, limx→0
1
x does not exist according to the just mentioned observation.

Let K > 0. We take δ = 1
K and, consequently, for all x ∈ (0, δ) it holds that f(x) = 1

x >
1
δ =

K and limx→0+
1
x =∞.

Similarly, for all x ∈ (−δ, 0) it holds that f(x) = 1
x <

1
δ = −K and thus limx→0−

1
x = −∞.
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4.2 Advanced limits

There is precisely one real number e such that

lim
x→0

ex − 1

x
= 1. (3)

This number is called Euler’s number, it is irrational and its value is approximately 2.72.
Thus we also get

lim
x→0

log(x+ 1)

x
= 1

The definition of sinx allows to deduce

lim
x→0

sinx

x
= 0. (4)

Lemma 4.2 (Limit of composed function). Let limx→x0 g(x) = A and limy→A f(y) = B. Then

lim
x→x0

f(g(x)) = B,

if at least one of the following is true:

1. f is continuous at the point A or

2. there is δ such that for all x ∈ (x− δ, x0) ∪ (x0, x+ δ) it holds that g(x) 6= A.

Now we are allowed to deduce further limits which will be used without any further explana-
tion (here note that the inner function g(x) = x

2 is injective and thus the second assumption of
the previous lemma is fulfilled):

lim
x→0

1− cosx

x2
= lim
x→0

sin2
(
x
2

)
+ cos2

(
x
2

)
− cos2

(
x
2

)
+ sin2

(
x
2

)
x2

= lim
x→0

2 sin2
(
x
2

)
4
(
x
2

)2
=

1

2
lim
x→0

sin
(
x
2

)
x
2

sin
(
x
2

)
x
2

=
1

2
lim
x→0

sin
(
x
2

)
x
2

lim
x→0

sin
(
x
2

)
x
2

=
1

2

Lemma 4.3 (Heine). Let f : R 7→ R. Then limx→x0
f(x) = A if and only if for every sequence

{xn}∞n=1, xn 6= x0 for all n ∈ N it holds that

limxn = x0 ⇒ lim f(xn) = A.

Lemma 4.4 (Sandwich Lemma). Let x0 ∈ R and let there is δ > 0 such that

f(x) ≤ g(x) ≤ h(x), ∀x ∈ (x0 − δ, x0) ∪ (x0, x0 + δ).

Then limx→x0
f(x) = limx→x0

h(x) = A implies limx→x0
g(x) = A.

Further limits of elementary functions:

• limx→∞ ax =∞ for a > 1,

• limx→∞ loga x =∞ for a > 1,
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• limx→0+ loga x = −∞ for a > 1,

• limx→π
2− tanx =∞,

• limx→∞ arctanx = π
2 ,

• limx→∞ arccotx = 0,

• limx→−∞ arccotx = π.

4.3 Derivative

Consider a graph of a function f(x), for example, of the following form

x

y

f(x)

x1 x2

The equation of the line passing through point 〈x1, f(x1)〉 and 〈x2, f(x2)〉 is

y =
f(x2)− f(x1)

x2 − x1
(x− x1) + f(x1).

How to make a tangent line? Just simply tend with x2 to x1. So the tangent line has equation

y = k(x− x1) + f(x1)

where

k = lim
x2→x1

f(x2)− f(x1)

x2 − x1
assuming the limit exists. We denote h := x2 − x1 and then we may write

k = lim
h→0

f(x1 + h)− f(x1)

h
.

Definition 4.6. Let f : R 7→ R. We define

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
.

We say that f ′(x) is a derivative of f at point x.
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In particular, a derivative of f in a point x is a slope of the tangent line passing through
〈x, f(x)〉.

Let emphasize that f ′ does not exist for every function.

Observation 4.4. Let f ′(x0) is real. Then f is continuous at x0.

Proof. Indeed, it is enough to compute

lim
x→x0

f(x)− f(x0) = lim
x→x0

f(x)− f(x0)

x− x0
(x− x0) = f ′(x0) · 0 = 0.

Consequently, limx→x0 f(x) = f(x0) and the function is continuous at x0.

Let compute several derivatives of elementary functions. First of all, since

an − bn = (a− b)(an−1 + an−2b+ an−3b2 + . . .+ abn−2 + bn−1),

we get for f(x) = xn

lim
h→0

(x+ h)n − xn

h
= lim
h→0

h((x+ h)n−1 + (x+ h)n−2x+ . . .+ (x+ h)xn−2 + xn−1)

h

= lim
h→0

(x+ h)n−1 + (x+ h)n−2x+ . . .+ (x+ h)xn−2 + xn−1 = nxn−1.

Thus, (xn)′ = nxn−1.

Take f(x) = ex.

lim
h→0

ex+h − ex

h
− lim
h→0

ex(eh − 1)

h
= ex lim

h→0

eh − 1

h
= ex.

Consequently, (ex)′ = ex. Consider f(x) = sinx. We compute

lim
h→0

sin(x+ h)− sinx

h
= lim
h→0

sinx cosh+ sinh cosx− sinx

h

= lim
h→0

(
sinh cosx

h
− sinx(1− cosh)

h

)
AL
= cosx lim

h→0

sinh

h
− sinx lim

h→0

1− cosh

h2
h
AL
= cosx

and we deduced that (sinx)′ = cosx.

Let compute derivative of f(x) = cosx:

lim
h→0

cos(x+ h)− cosx

h
= lim
h→0

cosx cosh− sinx sinh− cosx

h

= lim
h→0

(
cosx(cosh− 1)

h
+
− sinx sinh

h

)
.

Similarly as before we deduce that

(cosx)′ = − sinx.
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Finally, let compute a derivative of log x. We have

lim
h→0

log(x+ h)− log x

h
= lim
h→0

log
(
x+h
x

)
h

= lim
h→0

log
(
1 + h

x

)
h

= lim
h→0

log
(
1 + h

x

)
h
x

1

x

LOCF
=

1

x
.

Consequently,

(log x)′ =
1

x
.

Lemma 4.5. Let f and g be differentiable functions. Then

(f(x)± g(x))′ = f ′(x)± g′(x)

(f(x)g(x))′ = f ′(x)g(x) + f(x)g′(x)(
f(x)

g(x)

)′
=
f ′(x)g(x)− f(x)g′(x)

(g(x))2

if both sides have sense.

Proof. The first relation follows directly from the arithmetic of limits. Indeed,

(f(x)± g(x))′ = lim
h→0

f(x+ h)± g(x+ h)− (f(x)± g(x))

h

= lim
h→0

(f(x+ h)− f(x))± (g(x+ h)− g(x))

h

AL
= lim

h→0

f(x+ h)− f(x)

h
± lim
h→0

g(x+ h)− g(x)

h
= f ′(x)± g′(x).

Further,

(f(x)g(x))′ = lim
h→0

f(x+ h)g(x+ h)− f(x)g(x)

h

= lim
h→0

f(x+ h)(g(x+ h)− g(x)) + g(x)(f(x+ h)− f(x)

h

AL
= lim

h→0

f(x+ h)(g(x+ h)− g(x))

h
+ lim
h→0

g(x)(f(x+ h)− f(x))

h

= f(x)g′(x) + f ′(x)g(x)

which is a proof of the second relation.
Finally,(
f(x)

g(x)

)′
= lim
h→0

1

h

(
f(x+ h)

g(x+ h)
− f(x)

g(x)

)
= lim
h→0

1

h

(
f(x+ h)g(x)− g(x+ h)f(x)

g(x+ h)g(x)

)
= lim
h→0

1

g(x+ h)g(x)

(f(x+ h)− f(x)) g(x)− f(x)(g(x+ h)− g(x))

h

=
f ′(x)g(x)− f(x)g′(x)

(g(x))2

which proves the last relation.
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Let compute

(tanx)
′

=

(
sinx

cosx

)′
=

cos2 x+ sin2 x

cos2 x
=

1

cos2 x

and, similarly, we may deduce (cotx)′ = − 1
sin2 x

.
We present the following lemma without a proof. It concern the derivative of composed

functions.

Lemma 4.6. Let f and g be differentiable functions and let b = f(a). Then

(g ◦ f)′(a) = g′(b)f ′(a) = g′(f(a))f ′(a).

So we may use this to compute the derivative of ax:

(ax)′ =
(
ex log a

)′
= ex log a(x log a)′ = log a ex log a = log a ax.

Finally, we may also compute remaining derivatives of elementary functions:

1 = (x)′ = (arctan ◦ tanx)′ = arctan′(tanx) tan′ x.

We thus deduce that arctan′(tanx) = 1
tan′(x) and thus

arctan′(tanx) = cos2 x =
cos2 x

sin2 x+ cos2 x
=

1

1 + sin2 x
cos2 x

=
1

1 + tan2 x

which yield

arctan′(x) =
1

1 + x2
.

The similar computation may be performed also for other cyclometric functions. To sum up, we
present the following table:

f(x) f ′(x) conditions
xn nxn−1 n ∈ R, x as usual
ex ex x ∈ R
ax log a ax a ∈ (0, 1) ∪ (1,∞), x ∈ R
log x 1

x x ∈ (0,∞)
sinx cosx x ∈ R
cosx − sinx x ∈ R
tanx 1

cos2 x x ∈ R \ {π2 + kπ, k ∈ Z}
cotx − 1

sin2 x
x ∈ R \ {kπ, k ∈ Z}

arctanx 1
1+x2 x ∈ R

arccotx − 1
1+x2 x ∈ R

arcsinx 1√
1−x2

x ∈ (−1, 1)

arccosx − 1√
1−x2

x ∈ (−1, 1)

4.3.1 Mean-value theorems

Lemma 4.7. Let f be defined on an interval (a, b) let it attain its maximum (resp. minimum)
in a point x0 ∈ (a, b), and let f ′(x0) exist. Then f ′(x0) = 0.
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Proof. Let x0 be a point of maximum. For contradiction let f ′(x0) 6= 0 and without loss of

generality assume f ′(x0) > 0. But then there is δ > 0 such that f(x)−f(x0)
x−x0

> 0 for all x ∈
(x0, x0 + δ). But this means that f(x) > f(x0) which is in contradiction with the very first
assumption.

Lemma 4.8 (Rolle). Let f ∈ C([a, b]) and let f ′ exist for all x ∈ (a, b). Moreover, let f(a) = f(b).
Then there exists a point ζ ∈ (a, b) such that f ′(ζ) = 0.

Proof. For f constant it is enough to take any x ∈ (a, b). Once f is not constant, there is a
point ζ ∈ (a, b) where this function attains its maximum or minimum. According to the previous
lemma, f ′(ζ) = 0.

Lemma 4.9 (Lagrange). Let f ∈ C([a, b]) and let f ′ exists for all x ∈ (a, b). Then there exists
a point ζ ∈ (a, b) such that

f ′(ζ)(b− a) = f(b)− f(a)

Proof. Consider a function F (x) = f(x) − f(a) − f(b)−f(a)
b−a (x − a). This function satisfies all

assumption of the previous lemma (F (a) = F (b) = 0) and thus there is ζ such that F ′(ζ) = 0.
This might be rewritten as

0 = f ′(ζ)− f(b)− f(a)

b− a
which is the desired equality.

4.3.2 The course of function

The derivative helps to further analyze the function. This is the main content of this section.
First of all, the sign of derivative is in correspondence with the monotonicity of function.

Observation 4.5. Let f ∈ C(I) for some interval I ⊂ R. Assume that f ′(x) is exists for all
x ∈ I.

1. If f ′(x) > 0 for all x ∈ I, f(x) is increasing on I.

2. If f ′(x) < 0 for all x ∈ I, f(x) is decreasing on I.

Proof. We prove just the first part as the second part is just an easy modification. Let x, y ∈ I
be arbitrary points such that x < y. According to mean value theorem, there is ζ ∈ (x, y) such
that f ′(ζ)(x−y) = f(x)−f(y). As f ′(ζ) is positive we get f(x) < f(y) which implies the desired
claim.

Definition 4.7. We say that x0 ∈ Dom f is a local maximum of f if there exists δ > 0 such
that f(x) ≤ f(x0) for every x ∈ (x0 − δ, x0 + δ). It is a local minimum of f if there exists δ > 0
such that f(x) ≥ f(x0) for every x ∈ (x0 − δ, x0 + δ).

We define one additional qualitative property of function:

Definition 4.8. We say that f : R 7→ R is convex on a set I ⊂ Dom f if for all x, y, z ∈ I,
x < y < z it holds that

f(y)− f(x)

y − x
<
f(z)− f(y)

z − y
.

We say that f is concave on I if −f is convex on I.

Observation 4.6. Let f ∈ C(I) for some interval I ⊂ R. Assume that f ′′(x) exists for all x ∈ I.
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1. If f ′′(x) > 0 for all x ∈ I then f is convex on I.

2. If f ′′(x) < 0 for all x ∈ I then f is concave on I.

Proof. It is enough to show that f ′ increasing implies f convex as then the claim follows from
Observation 4.5. Take x, y, z ∈ I, x < y < z. According to mean value theorem there exist

η ∈ (x, y) and ζ ∈ (y, z) such that f ′(η) = f(y)−f(x)
y−x and f ′(ζ) = f(z)−f(y)

z−y . But since f ′ is

increasing and η < ζ we get f ′(η) < f ′(ζ) which implies the convexity of f .
If f ′′(x) < 0 we get (−f)′′(x) > 0 and according to the first part −f is convex. This gives

the second claim.

Definition 4.9. We say that x ∈ R is a point of inflection of f : R 7→ R if f is continuous at x
and there is δ > 0 such that one of the following appears

1. f is concave on (x− δ, x) and convex on (x, x+ δ)

2. f is convex on (x− δ, x) and concave on (x, x+ δ).

Roughly speaking, the point x is a point of inflection if f changes from convex to concave or
vice versa at point x.

Now we are ready to describe the problem of the course of function. The task ’examine the
course of the following function’ consists of the following sub-tasks:

1. To find out the domain, to determine whether the function is even, odd or periodic.

2. To find intersections with axes.

3. To examine the behavior of the function at the edges of the domain.

4. To derive function, to determine sets where the function is increasing and decreasing, to
determine extremes.

5. To differentiate the function for the second time, to determine sets where the function is
concave, convex, to determine points of inflection.

6. To sketch a graph of the function.

Let me comment each of this sub-tasks and let me use a function f(x) = x2+3
x−1 as an example:

1. To determinate the domain one has to be sure that there is no division by 0, that the
square root is taken from the non-negative number and that the argument of logarithm is
positive. In case of the exemplary function we have to exclude the possibility of x− 1 = 0
which means that Dom f = (−∞, 1) ∪ (1,∞). Directly from the domain one may deduce
that this function cannot be even, odd or periodic.

2. The intersections with axis are point of form 〈0, f(0)〉 and 〈x, 0〉 where x solves f(x) = 0.
In our case we obtain 〈0,−3〉 and since

0 =
x2 + 3

x− 1

has no solution there is no intersection with axis x.
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3. We have to evaluate limits on the edges of the domain. Let turn attention to our example.
Since the domain is of the form (−∞, 1) ∪ (1,∞) we have to compute the following four
limits:

lim
x→−∞

x2 + 3

x− 1
= −∞

lim
x→1−

x2 + 3

x− 1
= −∞

lim
x→1+

x2 + 3

x− 1
=∞

lim
x→∞

x2 + 3

x− 1
=∞

Besides, we have to examine asymptotes.

Definition 4.10. Let limx→∞
f(x)
x = k+ ∈ R and let limx→∞ f(x)− k+x = q+. Then an

asymptote at ∞ is a line with equation y = k+x+ q+.

Let limx→−∞
f(x)
x = k− ∈ R and let limx→−∞ f(x) − k−x = q−. Then an asymptote at

−∞ is a line with equation y = k−x+ q−.

I our particular case we have:

lim
x→∞

x2 + 3

x− 1

1

x
= 1

lim
x→∞

x2 + 3

x− 1
− x = 1

lim
x→−∞

x2 + 3

x− 1

1

x
= 1

lim
x→−∞

x2 + 3

x− 1
− x = 1.

So there is only line which represents asymptote at ∞ as well as at −∞ and the equation
of that line is

y = x+ 1.

4. We have to differentiate the function and then we have to find all x such that f ′(x) > 0
and all x for which f ′(x) < 0. The points where the monotonicity of the function changes
are extremal points.

Take our exemplary function. We have f ′(x) = x2−2x−3
(x−1)2 . Consequently, f ′(x) > 0 whenever

x ∈ (−∞,−1) and x ∈ (3,∞). Moreover, f ′(x) < 0 for x ∈ (−1, 3) \ {1}. Thus, f is
increasing on (−∞,−1), f is decreasing on (−1, 1), once again it is decreasing on (1, 3) and
f is increasing on (3,∞). We deduce that the local maximum is at point x = −1, its value
is −2, the local minimum is at point x = 3, its value is 6.

5. We do the same as in the previous step but for the second derivative.

Consider our exemplary function. We have f ′′(x) = −4
(x−1)3 . Consequently, f ′′(x) < 0 for

x ∈ (−∞, 1) and f ′′(x) > 0 for x ∈ (1,∞) and f is concave on (−∞, 1) and convex on
(1,∞). If 1 was a point of continuity of f , it would be a point of inflection. However, 1
does not belong to Dom f and thus there is no point of inflection.

6. Now we are ready to draw a graph using all the information we deduced.
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4.3.3 Further use

The derivatives may be further used for computation of approximate values and for computation
of limits. Without a proof, we state here two important concepts (this time we do not provide
any proof):

Lemma 4.10 (l’Hospital). Let f and g have finite derivatives for all x ∈ (a, b) ⊂ R. Assume
g′(x) 6= 0 and

lim
x→a+

f ′(x)

g′(x)
= A ∈ R∗.

Let moreover one of the following is true:

1. limx→a+ f(x) = 0 and limx→a+ g(x) = 0 or

2. limx→a+ |g(x)| =∞.

Then

lim
x→a+

f(x)

g(x)
= A.

Definition 4.11 (Taylor’s sum). Let f be n−times differentiable at point x0. Then a polynomial
of the form

Tf,x0,n(x) := f(x0) +
f ′(x0)

1!
(x− x0) +

f ′′(x0)

2!
(x− x0)2 + . . .+

f (n)

n!
=

n∑
j=0

f (i)

i!
(x− x0)i

is called the Taylor polynomial to f at point x0 of degree n.

Lemma 4.11. Assume that f is (n+ 1)−times differentiable at x0. Let x ∈ R be arbitrary and
let f is (n+ 1)−times differentiable on a closed interval I with edges at x0 and x. Then there is
ζ in between of x and x0 such that

f(x)− Tf,x0,n(x) =
f (n+1)(ζ)

(n+ 1)!
(x− x0)n+1.

4.4 Integrals

Definition 4.12. We say that F is an antiderivative (on interval (a, b)) of f if F ′(x) = f(x)
(for all x ∈ (a, b)).

We will use also the following notation∫
f(x) dx = F (x).

Observation 4.7. Let F1 and F2 be two antiderivatives of f on interval (a, b) ⊂ R. Then
F1 − F2 ≡ c for some constant c ∈ R.

Proof. It suffices to consider (F1 − F2)′ = (f − f) = 0. The claim follows immediately.

As a consequence the antiderivative is not determined uniquely. In particular, the antideriva-
tive to a given function f is a whole set of functions which differ by arbitrary constant – if F is
an antiderivative of f then all functions in form F + c, c ∈ R are also antiderivatives.
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4.4.1 Calculation – basic methods

Observation 4.8. Let F be an antiderivative of f and G be an antiderivative of g. Then F +G
is an antiderivative of f + g and cF is an antiderivative of cf for every c ∈ R.

Proof. It is enough to use rules for derivatives.

Further, we may use the table of basic derivatives in an ’inverted’ way:

f(x) F (x) conditions
xn 1

n+1x
n+1 + c, c ∈ R n 6= −1, x as usual

x−1 log |x|+ c, c ∈ R x 6= 0
ex ex + c, c ∈ R x ∈ R
ax 1

log aa
x + c, c ∈ R x ∈ R, a ∈ (0, 1) ∪ (1,∞)

sinx − cosx+ c, c ∈ R x ∈ R
cosx sinx+ c, c ∈ R x ∈ R

1
1+x2 arctanx+ c, c ∈ R x ∈ R

1√
1−x2

arcsinx+ c, c ∈ R x ∈ (−1, 1)

We present several exemplary calculations:∫
x+ 1√
x

dx =

∫
x

1
2 + x−

1
2 dx =

2

3
x

3
2 + 2x

1
2 + c, c ∈ R,∫

x2

x2 + 1
dx =

∫
1− 1

1 + x2
dx = x− arctanx+ c, c ∈ R,∫

2x+1 − 5x−1

10x
dx =

∫
2

(
1

5

)x
+

1

5

(
1

2

)x
dx =

2

log 1
5

(
1

5

)x
+

1

5 log 1
2

(
1

2

)x
+ c, c ∈ R.

The first example of somewhat more advanced methods is ’linear substitution’:

Observation 4.9. Let F (x) be an antiderivative to f(x). Then 1
aF (ax+ b) is an antiderivative

of f(ax+ b).

Proof. Indeed, we derive the composed function F (ax+ b):

(F (ax+ b))′ = F ′(ax+ b)(ax+ b)′ = f(ax+ b)a.

Below, we compute several exemplary exercises∫
(2x+ 3)7 dx =

1

16
(2x+ 7)8 + c, c ∈ R,

∫
1

x2 + 4
dx =

∫
1

4

1

(x/2)2 + 1
dx =

1

2
arctan(x/2) + c, c ∈ R.
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4.4.2 Riemann’s integral

The main aim of this section is to compute the area which is bounded by a graph of function.
More precisely, let f be a positive function defined on an interval (a, b). We will try to compute
the area of a set

M = {〈x, y〉 ∈ R2, x ∈ (a, b), 0 < y < f(x)}. (5)

The area is easy assuming f ≡ c, c > 0. In that case the area is given by c(b− a).
In what follow, we show how to compute an area of the following set:

x

y

M

a b

What if f is non-constant? We can approximate the value of the area by several rectangles
as you can see on the following picture

x

y

a b

Clearly, the area of M is less than the constructed approximation, however once there will
be enough small rectangles, the approximation will be close to the true value.

We can also try to use the following approximation – this time we use maximal rectangle
which are inside of the set M
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x

y

a b

In this case we obtain an area which is less than the area of M .
This idea is summarized in the following definition.

Definition 4.13. Let f be a real function defined on [a, b]. We define sequences

sn =

n∑
i=1

b− a
n

min{f(x), x ∈ [a+ (i− 1)(b− a)/n, a+ i(b− a)/n]}

Sn =

n∑
i=1

b− a
n

max{f(x), x ∈ [a+ (i− 1)(b− a)/n, a+ i(b− a)/n]}
(6)

If lim sn = limSn =: s then we say that s is the Riemann integral of f over (a, b). We write

(R)−
∫ b

a

f(x) dx = s

Let compute
∫ 2

1
x2 dx: First, we divide [1, 2] to n subintervals with length 1

n . Namely, the
i−th subinterval is of the form [

1 +
i− 1

n
, 1 +

i

n

]
.

Clearly, the maximum value of x2 on this interval is (1 + i
n )2, the minimum value is (1 + i−1

n )2.
We get

sn =

n∑
i=1

1

n
(1 +

i− 1

n
)2

Sn =

n∑
i=1

1

n
(1 +

i

n
)2

and we use
∑n
i=1 i = n(n+1)

2 and
∑n
i=1 i

2 = n(n+1)(2n+1)
6 to obtain

sn =1 +
n− 1

n
+

(n− 1)(2n− 1)

6n2

Sn =1 +
n+ 1

n
+

(n+ 1)(2n+ 1)

6n2

Since lim sn = limSn = 7
3 we deduce that this is the demanded area of the given set.
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4.4.3 Newton’s integral

Definition 4.14. Let F be an antiderivative of f . Then

(N )−
∫ b

a

f(x) dx = F (b)− F (a).

The number
∫ b
a
f(x) dx is called the Newton integral of f over (a, b).

We use the notation [F (x)]ba for the difference F (b)− F (a).
The following theorem is presented without proof.

Theorem 4.1 (The basic theorem of calculus). Let f be defined on [a, b] and let (N )−
∫ b
a
f(x) dx

and (R)−
∫ b
a
f(x) dx exist. Then

(N )−
∫ b

a

f(x) dx = (R)−
∫ b

a

f(x) dx

Let us note several remarks:

• This provides a simple way how to compute an area of the set M defined in (5).

• As the Riemann and Newton integrals are equal we write simply
∫ b
a
f(x) dx instead of

(R)−
∫ b
a
f(x) dx or (N )−

∫ b
a
f(x) dx.

Definition 4.15. Let f defined on (a, b) have antiderivative F . The number∫ b

a

f(x) dx = lim
x→a−

F (x)− lim
x→b+

F (x)

is called thegeneralized Newton integral of f over (a, b).

Once again, we will use [F (x)]ba for limx→a− F (x)− limx→b+ F (x).
With this at hand it is easy to compute areas of certain sets. Consider the integral from the

previous section: ∫ 2

1

x2 dx =

[
x3

3

]2
1

=
23

3
− 1

3
=

7

3
.

4.4.4 Calculation – method of substitution

We start with the method of substitution. The easiest example of substitution – a linear substi-
tution – was presented in one of the previous lessons. Let me remind that if F is an antiderivative
of f , then 1

aF (ax+ b) is an antiderivative of f(ax+ b). This might be seen as a kind of substi-
tution. In particular, we use substitution y = ax + b (i.e., y is a linear function of x) and then
F ′(y) = f(y)y′ = f(y)a.

Now we present a method how to use also a more general kind of substitution.
The formal description is the following:

Theorem 4.2. Let ϕ : (α, β) 7→ (a, b) has a finite derivative in every x ∈ (α, β) and let f be
defined on (a, b). Then if F is an antiderivative of f then F (ϕ) is an antiderivative of f(ϕ) · ϕ′
on an (α, β).

35



Proof. It follows from the rule of derivation of the composed function. We have

(F (ϕ))′ = F ′(ϕ)ϕ′ = f(ϕ)ϕ′

Informally, we proceed as follows. Consider the following integral:∫
f(ϕ(x))ϕ′(x) dx

We write

ϕ(x) = t

ϕ′(x) dx = dt

and we plug everything to the given integral. Thus we get∫
f(ϕ(x))ϕ′(x) dx =

∫
f(t) dt = F (t) + c = F (ϕ(x)) + c.

We present several examples.

•
∫

sin2 x cosx dx. Here we use a substitution t = sinx :

sinx = t

cosx dx = dt.

We get ∫
sin2 x cosx dx =

∫
t2 dt =

t3

3
+ c =

sin3 x

3
+ c.

•
∫

1
x(log2 x+1)

dx. We use a substitution t = log x :

log x = t

1

x
dx = dt.

Thus, ∫
1

x(log2 x+ 1)
dx =

∫
1

t2 + 1
dt = arctan t+ c = arctan(log x) + c

•
∫
x3
√
x2 + 1 dx. The correct substitution is t = x2 + 1. Note that then x2 = t− 1:

x2 + 1 = t

2x dx = dt.

∫
x3
√
x2 + 1 dx =

1

2

∫
x2
√
x2 + 12x dx =

1

2

∫
(t− 1)

√
t dt

=
1

2

(
2

5
t5/2 − 2

3
t3/2 + c

)
=

1

5
(x2 + 1)5/2 − 1

3
(x2 + 1)3/2 + c
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We may also use the substitution method to deduce the following observation which will be
intensively used in the next subsection

Observation 4.10. Any differentiable function f fulfills∫
f ′(x)

f(x)
dx = log(|f(x)|) + c.

Proof. Indeed, it is enough to take t = f(x). Then f ′(x) dx = dt and we have∫
f ′(x)

f(x)
dx =

∫
1

t
dt = log |t|+ c = log(|f(x)|) + c.

With this observation at hand it is easy to deduce, for example, that∫
2x+ 1

x2 + x+ 3
dx = log |x2 + x+ 3|+ c.

4.4.5 Calculation – integration by parts

The formal description of the integration by parts is mentioned in the following theorem.

Theorem 4.3. Let F be an antiderivative of f and G be an antiderivative of g. Then∫
f(x)G(x) dx = F (x)G(x)−

∫
F (x)g(x) dx.

Proof. It is enough to compute
(
F (x)G(x)−

∫
F (x)g(x) dx

)′
:(

F (x)G(x)−
∫
F (x)g(x) dx

)′
= f(x)G(x) + F (x)g(x)− F (x)g(x) = f(x)G(x).

This concludes the proof as we deduce that the derivative of the right hand side is equal to
f(x)G(x).

Clearly, this technique is useful (not only) for integration of a product of two functions. The
most typical situation is polynomial × sin, cos or exponential function. Below we present some
typical cases.

• Polynomial times exp, sin, cos. In this case it is enough to lower the degree of the polynomial
to 0 by several use of the integration by parts. Let compute∫

x2e3x dx.

We take G(x) = x2 and f(x) = e3x. This gives g(x) = 2x and F (x) = 1
3e

3x. We get∫
x2e3x dx = x2

1

3
e3x − 1

3

∫
2xe3x dx

and we use integration by parts once again with G(x) = 2x and f(x) = e3x to get∫
x2e3x dx = x2

1

3
e3x − 2

9
xe3x +

2

9

∫
e3x dx

which gives ∫
x2e3x dx = x2

1

3
e3x − 2

9
xe3x +

2

27
e3x + c, c ∈ R.
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• sin, cos, exp times sin, cos, exp. This time we have to integrate by parts twice in a row
and then we have to use the resulting equation to compute the original integral. This is
illustrated in the exercise below:
Compute ∫

e2x sinx dx

We take G(x) = e2x and f(x) = sinx. This gives g(x) = 2e2x and F (x) = − cosx. Thus∫
e2x sinx dx = −e2x cosx+

∫
2e2x cosx dx.

We apply integration by parts once again with G(x) = e2x and f(x) = cosx (yielding
g(x) = 2e2x and F (x) = sinx) to get∫

e2x sinx dx = −e2x cosx+ 2e2x sinx− 4

∫
e2x sinx dx.

This gives ∫
e2x sinx dx = −1

5
e2x cosx+

2

5
e2x sinx+ c, c ∈ R.

• functions with rational derivatives. Here we have to always differentiate a function which
has a nice rational derivative:
Compute ∫

arctanx dx

We may write arctanx as 1 · arctanx and take G(x) = arctanx and f(x) = 1. This choice
gives g(x) = 1

1+x2 and F (x) = x.∫
arctanx dx = x arctanx−

∫
x

x2 + 1
dx.

Now we use substitution x2 + 1 = t, 2x dx = dt and thus∫
x

x2 + 1
dx =

∫
1

2

1

t
dt =

1

2
log |t|+ c =

1

2
log(x2 + 1) + c

To sum up we get ∫
arctanx dx = x arctanx− 1

2
log(x2 + 1) + c.

As next example, compute ∫
x log x dx.

Once again, take G(x) = log x and f(x) = x. This gives g(x) = 1
x and F (x) = 1

2x
2. We

get ∫
x log x dx =

1

2
x2 log x− 1

2

∫
x2

1

x
dx =

1

2
x2 log x− 1

4
x2 + c, c ∈ R.
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4.4.6 Integration of rational functions

This section deals with integrals of the form∫
P (x)

Q(x)
dx

where P and Q are polynomials.
Moreover, we may assume degP < degQ. In case this is not true it is enough to divide P by Q:

For example let compute
∫
x3+4x
x2+2 dx. It holds that

x3 + 4x

x2 + 2
= x+

2x

x2 + 2

and thus ∫
x3 + 4x

x2 + 2
dx =

∫
x+

2x

x2 + 2
dx =

x2

2
+ log(x2 + 2) + c, c ∈ R

Below we present the partial fraction decomposition. It starts with the following theorem.

Theorem 4.4. Every polynomial can be written as a product of 1−degree polynomials and irre-
ducible 2−degree polynomials.

Recall that a polynomial ax2 + bx+ c is irreducible if there are no real roots.
We adopt the following strategy: the polynomial Q in the denominator may be written as a
product of the aforementioned polynomials. In that case, the whole fraction is rewritten as
a sum of fractions with 1− and 2− degree polynomials in the denominator (partial fraction
decomposition). This sum may be integrated by methods mentioned in the previous talks.

Below we show how to deal with 1−degree polynomials. Let compute
∫

x+1
x2+5x+6 dx. We

know that (x2 + 5x+ 6) = (x+ 2)(x+ 3) and thus

x+ 1

x2 + 5x+ 6
=

x+ 1

(x+ 2)(x+ 3)
=

A

x+ 2
+

B

x+ 3

=
A(x+ 3) +B(x+ 2)

(x+ 2)(x+ 3)
.

This yields
x+ 1 = Ax+ 3A+Bx+ 2B

and we compare appropriate coefficients to deduce

1 = A+B

1 = 3A+ 2B

Thus A = −1 and B = 2 and, consequently,

x+ 1

x2 + 5x+ 6
=

x+ 1

(x+ 2)(x+ 3)
=

2

x+ 3
− 1

x+ 2
.

Thus∫
x+ 1

x2 + 5x+ 6
dx = 2

∫
1

x+ 3
dx−

∫
1

x+ 2
dx = 2 log |x+ 3| − log |x+ 2|+ c, c ∈ R
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What happens if there is a one-degree polynomial powered to some number higher than 1?

This is shown in the following example. Let compute
∫

3x2−2x
(x−1)2(2x−1) dx. This time we write

3x2 − 2x

(x− 1)2(2x− 1)
=

A

x− 1
+

B

(x− 1)2
+

C

2x− 1

=
A(x− 1)(2x− 1) +B(2x− 1) + C(x− 1)2

(x− 1)2(2x− 1)
.

We deduce
3x2 − 2x = A(2x2 − 3x+ 1) +B(2x− 1) + C(x2 − 2x+ 1)

and thus

3 = 2A+ C

−2 = −3A+ 2B − 2C

0 = A−B + C

This yields A = 2, B = 1 and C = −1 and∫
3x2 − 2x

(x− 1)2(2x− 1)
dx = 2

∫
1

x− 1
dx+

∫
1

(x− 1)2
dx−

∫
1

2x− 1
dx

= 2 log |x− 1| − (x− 1)−1 − 1

2
log |2x− 1|+ c, c ∈ R.

We turn our attention to an irreducible polynomial of degree 2 First we show how to integrate
such functions: ∫

2x+ 3

x2 + 4x+ 8
dx =

∫
2x+ 4

x2 + 4x+ 8
dx−

∫
1

x2 + 4x+ 8
dx.

The first integral on the right hand side is of the form f ′

f and we use Observation 4.10 to get∫
2x+ 4

x2 + 4x+ 8
dx = log |x2 + 4x+ 8|+ c, c ∈ R.

Further, we have∫
1

x2 + 4x+ 8
dx =

∫
1

x2 + 4x+ 4 + 4
dx =

∫
1

(x+ 2)2 + 4
dx.

This can be rearranged to some kind of arctan:∫
1

(x+ 2)2 + 4
dx =

1

4

∫
1(

x
2 + 1

)2
+ 1

dx =
1

2
arctan

(x
2

+ 1
)

+ c, c ∈ R

and we obtain∫
2x+ 3

x2 + 4x+ 8
dx = log |x2 + 4x+ 8| − 1

2
arctan

(x
2

+ 1
)

+ c, c ∈ R.

40



Now we can perform the partial fraction decomposition. Let compute
∫

6x+4
(x2+2x+2)(x−1) dx.

This time we have

6x+ 4

(x2 + 2x+ 2)(x− 1)
=

Ax+B

x2 + 2x+ 2
+

C

x− 1
=
Ax(x− 1) +B(x− 1) + C(x2 + 2x+ 2)

(x2 + 2x+ 2)(x− 1)

and we deduce

0 = A+ C

6 = −A+B + 2C

4 = −B + 2C

We deduce A = −2, B = 0 and C = 2 and thus∫
6x+ 4

(x2 + 2x+ 2)(x− 1)
dx = 2

∫
1

x− 1
dx−

∫
2x

x2 + 2x+ 2
dx

The first integral is simple so we pay attention to the second one. We have∫
2x

x2 + 2x+ 2
dx =

∫
2x+ 2

x2 + 2x+ 2
dx− 2

∫
1

(x+ 1)2 + 1
dx

= log(x2 + 2x+ 2)− 2 arctan(x+ 1) + c, c ∈ R

Thus∫
6x+ 4

(x2 + 2x+ 2)(x− 1)
dx = 2 log |x− 1| − log(x2 + 2x+ 2) + 2 arctan(x+ 1) + c, c ∈ R.

The above attitude (partial fraction decomposition) may be summarized as follows

Theorem 4.5. Let degP < degQ and let

Q(x) = α0(x− α1)r1 · . . . · (x− αk)rk(x2 + p1x+ q1)s1 · . . . · (x2 + plx+ ql)
sl

where the second order polynomials have no real roots and no multiplier divide any other one and
all coefficients are integers. Then there are real numbers A11, . . . , A1r1 , . . . , Ak1, . . . , Akrk and
B11, C11, . . . , B1s1 , C1s1 , . . . Bl1, Cl1, . . . , Blsl , Clsl such that

P (x)

Q(x)
=

A11

x− α1
+ . . .+

A1r1

(x− α1)r1
+ . . .+

Ak1
(x− αk)

+ . . .+
Akrk

(x− αk)rk
+

B11x+ C11

x2 + p1x+ q1
+ . . .+

B1s1x+ C1s1

(x2 + p1x+ q)s1

+ . . .+
Bl1x+ Cl1
x2 + plx+ q

+ . . .+
Blslx+ Clsl

(x2 + plx+ ql)sl

This theorem is presented without a proof.

The above procedure may be applied also on integrals containing sin and cos. In particular,
we consider integrals of form ∫

R(sin(x), cos(x)) dx
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where R is a rational function to integrals which might be solved out by the partial fraction
decomposition.

In case everything appears in an even power, you can use substitution tanx = t. In that case

dx = 1
1+t2 dt, cos2 x = 1

t2+1 and sin2 x = t2

t2+1 . Thus∫
sin2x

1 + sin2 x
dx =

∫
t2

2t2 + 1

1

t2 + 1
dt

=

∫
1

t2 + 1
dt−

∫
1

2t2 + 1
dt = arctan t−

√
2

2
arctan(

√
2t) + c

= x−
√

2

2
arctan(

√
2 tanx) + c, c ∈ R

If there are also other powers of sin or cos, we use a universal substitution tan x
2 = t. In that

case dx = 2
1+t2 dt, sinx = 2t

t2+1 and cosx = 1−t2
t2+1 . Compute, for example,∫

1

2 sinx− cosx+ 5
dx =

∫
1

4t
t2+1 −

1−t2
t2+1 + 5

2

1 + t2
dt

=

∫
1

4t− 1 + t2 + 5t2 + 5
dt =

∫
1

6t2 + 4t+ 4
dt

=
1√
20

arctan

(
3√
5

tan
x

2
+

1√
5

)
+ c, c ∈ R.

4.4.7 Use of integrals

Length of curve:

L(c) =

∫ b

a

√
1 + (f ′(x))2 dx

where c is a graph of function f for x ∈ (a, b).

Compute the length of a curve f(x) = x
3
2 , x ∈ [0, 4]. We have f ′(x) = 3

2x
1
2 and thus

∫ 4

0

√
1 +

9

4
x dx =

∫ 4

0

(
1 +

9

4
x

) 1
2

dx =
8

27

[(
1 +

9

4
x

) 3
2

]4
0

=
8

27

(√
10

3
− 1
)

Volume of a solid of revolution:
Let take a set

M = {〈x, y〉 ∈ R, x ∈ (a, b), 0 ≤ y < f(x)}
and rotate it around the axis x. The volume of the solid that has arisen is

V = π

∫ b

a

f2(x) dx

Let compute the volume of cone which arises as a rotation of the set M = {0 ≤ y ≤ x, x ∈
(0, 4)} around the axis x:

π

∫ 4

0

x2 dx = π

[
x3

3

]4
0

=
64

3
π.
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4.5 Improper integrals

Recall, that the generalized Newton integral is defined as∫ b

a

f(x) dx = lim
x→b−

F (x)− lim
x→a+

F (x)

where F is an antiderivative of f . This allows to compute integrals where a or b are ±∞ or
where F (a) are not defined.

Let compute
∫∞
0

1
1+x2 dx. We have∫ ∞

0

1

1 + x2
dx = [arctanx]

∞
0 = lim

x→∞
arctanx− lim

x→0−
arctanx =

π

2

Let compute
∫ 1

0
1√
x

dx. We have∫ 1

0

x−1/2 dx =
[
2x1/2

]1
0

= 2− 0 = 2.

But ∫ 1

0

1

x2
dx =

[
−x−1

]1
0

= 1 +∞ =∞

and ∫ ∞
1

x dx =

[
1

2
x2
]∞
1

=∞

In what follows we consider a problem of ’finiteness’ of improper integrals.

Definition 4.16. Let
∫ b
a
f(x) dx is finite. Then we say, that this integral converges. In other

case we say it diverges.

Clearly, let −∞ < a < b <∞ and f(x) is bounded on (a, b). Then
∫ b
a
f(x) dx converges.

Comparison: let f and g be nonnegative function on an interval (a, b) ⊂ R. Then:

• if f ≤ g and
∫ b
a
g(x) dx converges then also

∫ b
a
f(x) dx converges.

• if f ≤ g and
∫ b
a
f(x) dx diverges then also

∫ b
a
g(x) dx diverges.

Does
∫∞
3

1
x2+2x dx converge?

Yes, because 1
x2+2x ≤

1
x2 for all x ∈ (3,∞) and∫ ∞
3

1

x2
dx =

[
− 1

x

]∞
3

= − lim
x→∞

1

x
+

1

3
=

1

3
.

How about integral
∫∞
3

1
x2−2x dx? This time we have 1

x2−2x ≥
1
x2 but that is not sufficient.

We postpone this question.

Scale: Consider an integral ∫ 1

0

1

xn
dx
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This integral converges for n < 1 and diverges for n ≥ 1.
Consider ∫ ∞

1

1

xn
dx

This integral converges for n > 1 and diverges for n ≤ 1.
Comparison, limit case: Let f, g be continuous on [a, b) ⊂ R. Let

lim
x→b−

f(x)

g(x)
∈ (0,∞).

Then
∫ b
a
f(x) dx converges if and only if

∫ b
a
g(x) dx converges.

Now we can decide about the convergence of∫ ∞
3

1

x2 − 2x
dx.

4.6 Exercises

1. Define one-sided infinite limits.

2. Define infinite limits at infinity.

3. Use definition of limit to proof limx→∞
1
x = 0.

4. Try to find functions f, g : R 7→ R such that limx→x0 g(x) = A ∈ R, limx→A f(x) = B ∈ R
and, simultaneously, limx→x0 f(g(x)) 6= B.

5. Deduce (4) from the basic definitions of elementary functions.

6. Try to find functions f, g : R 7→ R such that limx→x0
g(x) = A ∈ R, limy→A f(y) = B ∈ R

and, simultaneously, limx→x0 f(g(x)) 6= B.

7. Compute the following limit of sequence

lim

(
1 +

1

n

)n
.

8. If f is continuous at point x0 then it has a real derivative at x0. Is this claim true?

9. Compute (xx)′ where x ∈ (0,∞).

10. Try to compute the length of half of the circle, i.e. the length of the graph of the function
y =
√

1− x2 where x ∈ 〈−1, 1〉. Hint: use x = sin t.

11. Try to compute the volume of the torus, this means the volume of the solid which arises
(for example) as a rotation of the set M = {x ∈ (−1, 1), −

√
1− x2 < y − 3 <

√
1 + x2}

around the axis x.
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5 Differential equations

5.1 Introduction

Recall, that for y(x) : R 7→ R the meaning of y′(x) is ’increment’. This section is devoted to the
study of differential equations, i.e., equations where the increment depends on y.

We start with a simple example. Assume that y(x) denotes the number of people infected by
some disease. Then we may deduce that the increment y′(x) of this value depends linearly on
the number of people infected. Thus,

y′(x) = ky(x)

for some constant k ∈ (0,∞) (usualy this constant has to be determined with the help of known
data and in collaboration with other experts). We deduce that

y′(x)

y(x)
= k

and, consequently,
(log y(x))

′
= k

which gives y(x) = cekx for some constant c ∈ R.
Assume we have a differential equation of the form

y′ = f(x, y) (7)

Here of course y = y(x), however we will omit this dependency to shorten the notation.

Definition 5.1. A solution to this differential equation on an interval (c, d) ⊂ R is every function
y(x) which fulfills (7). The solution of (7) on (c, d) which might not be prolonged to some
(c′, d′) ⊃ (c, d) is called a maximal solution. The set of all maximal solutions is called a general
solution.

5.2 Separation of variables

This subsection is devoted to the study of equations of the following form:

y′(x) = f(y(x))g(x).

First of all, let y0 ∈ R be such that f(y0) = 0. Then

y ≡ y0

is a stationary solution.
Assuming y is such that f(y) 6= 0, we can deduce

y′(x)

f(y(x))
= g(x).

Assume F (y) is antiderivative of 1
f(y) . Then the equation might be rewritten as

F ′(y) = g(x)
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and we deduce that
F (y(x)) = G(x)

where G′ = g.
It it is possible, we deduce how y depends on x.
Let solve

y′ = 2
√
|y|.

Sticking: Let y1 : (a, x0) 7→ R and y2 : (x0, b) 7→ R are solutions to

y′ = f(x, y).

Let limx→x0− y1 = limx→x0+ y2 = y0 and let f(x, y) is continuous at (x0, y0). Then

y =

 y1 for x ∈ (a, x0)
y0 for x = x0

y2 for x ∈ (x0, b)

is a solution to y′ = f(x, y) on (a, b).
This allows to conclude the example.

Further equations which can be solved by the separation of variables:
Equations of the form

y′ = f(x, y)

where f(λx, λy) = f(x, y) for every λ 6= 0. In that case we can write f(x, y) = f(1, yx ) and we
use a substitution z = y

x . As y = zx, we get y′ = z′x+ z and the equation might be rewritten as

z′x+ z = f(1, z)

which yields (in case everything is well defined)

z′ = (f(1, z)− z) 1

x
.

This equation can be solved by the separation of variables.

Example: Let treat y′ = −xy+x2+y2

x2 . We use substitution y(x) = xz(x) (i.e. z(x) = y(x)
x . We

obtain
xz′ + z = −z + 1 + z2

yielding
xz′ = (z − 1)2.

5.3 First-order linear equations

This subsection deals with equations of the form

y′(x) + a(x)y(x) = b(x) (8)

where y is an unknown function and a and b are given functions. Such equations are called linear
because y as well as y′ appears only in the first power. We denote the left hand side of (8) by
L(y), i.e.

L(y) = y′(x) + a(x)y(x). (9)
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L is an operator (the function whose input is function) and it is linear, meaning

L(y1 + y2) = L(y1) + L(y2)

L(αy1) = αL(y1)
(10)

for every α ∈ R and every pair of differentiable functions y1 and y2. There are two ways how to
obtain a solution to this equation. One is called ’variation of constants’, the second one is called
’integration factor’.

5.3.1 Variation of constants

We start by a simple observation

Observation 5.1. Let y1 and y2 be two solutions to (8). Then y1− y2 solves (8) with b(x) ≡ 1.

Proof. Due to the linearity of L we have

L(y1 − y2) = L(y1)− L(y2) = b(x)− b(x) = 0.

The linear differential equation with zero right hand side (i.e., (8) with b(x) ≡ 0) is called
homogeneous linear differential equation.

Observation 5.2. Let M = {y, L(y) = 0} be the set of all solutions to a homogeneous differential
equation and let yp be a particular solution to L(y) = b(x). Then {yp + y, y ∈ M} is the set of
all solutions to L(y) = b(x).

Proof. If y is such that L(y) = 0 and yp satisfies L(yp) = b(x) then L(y + yp) = b(x).
Next let yr be an arbitrary function satisfying L(yr) = b(x). Then L(yr − yp) = L(yr) −

L(yp) = b(x) − b(x) = 0 and thus yr − yp ∈ M and, consequently, yr can be written as yr =
yp + (yr − yp).

This observation provides a manual how to find all solutions to the given first order linear
differential equation. First, we find all solutions to

y′(x) + a(x)y(x) = 0.

This can be done by the separation of variables. By this we obtain that

y(x) = cg(x) (11)

for some function g.
It remains to find one particular solution to

y′(x) + a(x)y(x) = b(x).

In order to do so, we use the method called ’variation of parameters’. We assume that one
solution is of the form y(x) = c(x)g(x) (we just assume that the constant appearing in (11) is
actually a function of x). We have y′(x) = c′(x)g(x) + c(x)g′(x) and since g(x) is a solution to
the homogeneous problem, we deduce

c′(x)g(x) = b(x).
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which is an equation for c′(x). The solution is then c(x) =
∫ b(x)
g(x) dx.

Example: Let solve
y′ + y = sinxe−x. (12)

The appropriate homogeneous equation is of the form

y′ + y = 0

which gives y = ce−x, c ∈ R. Let now assume that one solution is of the form y = c(x)e−x. We
have y′(x) = c′(x)e−x − c(x)e−x. We plug this into (12) to obtain

c′(x)e−x = sinxe−x.

This yields c′(x) = sinx and thus c(x) = − cosx. As a result, the demanded particular solution
is y = − cosxe−x and all solutions to (12) are of the form

y = − cosxe−x + ce−x, c ∈ R.

5.3.2 Integration factor

We multiply (8) by certain function A(x) (integration factor) to obtain

A(x)y′(x) +A(x)a(x)y(x) = A(x)b(x).

If A is chosen correctly then the left hand side will become a derivation of a function z defined
as z = A(x)y(x). This is true as far as A′(x) = A(x)a(x). Thus

z′(x) = A(x)b(x)

and the integration factor A(x) is equal to e
∫
a(x) dx. (Recall it holds that

(
e
∫
a(x) dx

)′
=

a(x)e
∫
a(x) dx = a(x)A(x))

Exercise Let solve
xy′ − 3y = x4

First, we have to assume x 6= 0 (we will solve the equation separately on (−∞, 0) and (0,∞)) in
order to rearrange the equation to

y′ − 3

x
y = x3. (13)

We have ∫
− 3

x
dx = −3 log |x| = log |x|−3

and, consequently, the desired integrating factor is elog |x|
−3

= |x|−3. Let solve the equation on
(0,∞). We multiply (13) by x−3 to get

x−3y′ − 3x−4y = 1

and we use a substitution z = x−3y. Then z′ = x−3y′ − 3x−4y (this is effective also on (−∞, 0)
and (13) becomes

z′ = 1.

This yields
z = x+ c, c ∈ R
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and since y = zx3 we obtain

y = x3(x+ c), c ∈ R, x ∈ (0,∞) or x ∈ (−∞, 0). (14)

Sticking: In the last step we have to find all maximal solutions to the original equation, i.e.

xy′ − 3y = x4

note that this equation is well defined also for x = 0. We take solutions (??). Note that a solution
y1 defined on (−∞, 0) can be extended by a solution y2 defined on (0,∞) if limx→0− y1(x) =
limx→0+ y2(x) and limx→0− y

′
1(x) = limx→0+ y

′
2(x). Here we have limx→0− y(x) = limx→0+ y(x) =

limx→0− y
′(x) = limx→0+ y

′(x) = 0. Thus, all solutions to this equation are of the form

y(x) =

{
x3(x+ c1), x ∈ (−∞, 0]
x3(x+ c2), x ∈ (0,∞)

where c1, c2 ∈ R are arbitrary constants.

5.4 Linear equations with constant coefficients

Let n ∈ N . The n−th order linear equation with constant coefficient is an equation of the form

any
(n)(x) + an−1y

(n−1)(x) + . . .+ a1y
′(x) + a0y(x) = b(x) (15)

where ai ∈ R for all i ∈ {0, 1, . . . , n}, an 6= 0, y(x) is an unknown n−th times differentiable
function and b(x) is given right hand side.
For example,

y′′′ + 4y′′ − 5y = ex

is a third-order linear equation.
We denote the left hand side of the equation by L(y), i.e.,

L(y) = any
(n)(x) + an−1y

(n−1)(x) + . . .+ a1y
′(x) + a0y(x)

The operator L(y) is linear:

L(y1 + y2) = L(y1) + L(y2)

L(ay1) = aL(y1)

for all n−th times differentiable functions y1 and y2 and for all a ∈ R.
Similarly as in the previous subsection we may deduce

Observation 5.3. Let y1 and y2 be two solutions to (15). Then y1 − y2 solves (15) with zero
right hand side.

and

Observation 5.4. Let M = {y, L(y) = 0} be the set of solutions to a homogeneous differential
equation and let yp be a particular solution to L(y) = b. Then {yp + y, y ∈ M} is the set of
solutions to L(y) = b.
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This is once again the way how to find all solutions to the non-homogeneous linear dif-
ferential equation. First, we treat the appropriate homogeneous problem and we find all its
solutions. Next, we find one solution to the non-homogeneous problem. The sum of this partic-
ular solution and all solutions to the homogeneous problem is then the set of all solutions to the
non-homogeneous problem.

We treat the problem

any
(n)(x) + an−1y

(n−1)(x) + . . .+ a1y
′(x) + a0y(x) = 0 (16)

We assume that the solution is in the form y(x) = eλx. We obtain the following equation for
unknown λ

anλ
n + an−1λ

n−1 + . . .+ a1λ+ a0 = 0 (17)

This is called characteristic equation.
Assume now that the characteristic equation has n different roots λ1, λ2, . . ., λn. Then the

solution is every function of the form

y = c1e
λ1x + c2e

λ2x + . . .+ cne
λnx

where c1, c2, . . . , cn ∈ R are arbitrary constants. The set

{eλ1x, eλ2x, . . . , eλnx}

is called fundamental system.
Example Consider the equation

y′′ + 4y′ + 3y = 0.

Its characteristic equation is
λ2 + 4λ+ 3 = 0

and it has two solutions, λ1 = −1 and λ2 = −3. Consequently, the set {e−x, e−3x} is the
fundamental system and all solutions to the given equation are of the form y(x) = c1e

−x+c2e
−3x

where c1, c2 ∈ R are arbitrary constants.

What happens if there are complex roots? If λ = µ + iν is a root then λ = µ − iν is also a
root. Functions in fundamental system which are related to this pair of roots are

eµx sin(νx), eµx cos(νx).

And what if λ is a root with multiplicity higher than 1 (say multiplicity is equal to l)? Then,
in case λ is real, the fundamental system contains functions

eλx, xeλx, . . . , xl−1eλx.

If λ = µ+ iν then the fundamental system contains

eµx sin(νx), eµx cos(νx), xeµx sin(νx), xeµx cos(νx),

. . . , xl−1eµx sin(νx), xl−1eµx cos(νx).

Once we compute all solutions to the homogeneous we need to find at least one particular
solution. This is simple once the right hand side of the equation is of special form. This is
described in the following theorem:
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Theorem 5.1. Consider an equation

L(y) = eαx[q1(x) cos(βx) + q2(x) sin(βx)] (18)

where q1 and q2 are polynomials of degree at most n ∈ N. Let k ≥ 0 be the multiplicity of a root
λ = α+ βi of the characteristic equation (take k = 0 if such λ is not a root).

Then there are uniquely determined polynomials r1 and r2 of degree at most n such that

y = xkeαx[r1(x) cos(βx) + r2 sin(βx)]

is a solution to (15).

Example: We solve
y′′ − 4y′ + 4y = x2 + 2e2x. (19)

The characteristic equation is
λ2 − 4λ+ 4 = 0

with one root λ = 2 whose multiplicity is 2. The fundamental system is F.S. = {e2x, xe2x}.
Let find a particular solution. The right hand side is not in the special form, however, we

may split it into two part and first we solve

y′′ − 4y′ + 4y = x2. (20)

This is a special right hand side (it is enough to take α = 0, β = 0 and q1 = x2 in the previous
Theorem). As a consequence, one of the solution should be yp = r1(x) where r1(x) = ax2+bx+c
is a second-order polynomial. We have y′p = 2ax + b and y′′p = 2a. We plug this into (20) to
deduce that the particular solution is of the form

yp =
1

4
x2 +

1

2
x+

3

8
.

Next, we solve
y′′ − 4y′ + 4y = 2e2x (21)

Once again, we deal with the special right hand side (this time we take α = 2, β = 0 and q1 = 2).
This time λ = 2 is a root of the characteristic equation and its multiplicity is 2. As a result, we
are looking for solution in a form yr = ax2e2x. As a result, we get a = 1 and thus yr = x2e2x.

Thus, all solutions to (19) are of the form

y = x2e2x +
1

4
x2 +

1

2
x+

3

8
+ c1e

2x + c2xe
2x, c1, c2 ∈ R.

What if the right hand side is not in a special form? We need to use the variation of constants.
This works similarly as in the case of first-order linear equations. Namely, we obtain a solution
to the homogeneous problem of the form

y = c1f1 + c2f2 + . . .+ cnfn

where f1, . . . , fn are functions from the fundamental system and c1, . . . , cn are arbitrary real
constant. Then we assume that the particular solution is of the form

y = c1f1 + c2f2 + . . .+ cnfn
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but this time c1, . . . , cn are unknown functions. The rest is just a matter of correct handling.
Example: We solve

y′′′ − y′ =
ex

1 + ex
.

The characteristic equation is
λ3 − λ = 0

. Its roots are λ1 = 0, λ2 = 1, λ3 = −1 and all solutions to the homogeneous problem are

y = c1 + c2e
x + c3e

−x, c1, c2, c3 ∈ R.

One particular solution is of the form y = c1(x) + c2(x)ex + c3(x)e−x. We have

y′ = c′1(x) + c′2(x)ex + c2(x)ex + c′3(x)e−x − c3(x)e−x

Since there is some degree of freedom we assume that c′1(x) + c′2(x)ex + c′3(x)e−x. Thus y′ =
c2(x)ex − c3(x)e−x and

y′′(x) = c′2(x)ex + c2(x)ex − c′3(x)e−x + c3(x)e−x.

Once again, we may assume c′2(x)ex − c′3(x)e−x = 0 and y′′(x) = c2(x)ex + c3(x)e−x. This gives

y′′′(x) = c′2(x)ex + c2(x)ex + c′3(x)e−x − c3(x)e−x.

We plug this into the given equation to get

c′2(x)ex + c′3(x)e−x =
ex

1 + ex

This gives (to be done. . . ).

5.5 Exercises

• Try to write down a differential equation which describe a number N(t) of rabbits at time
t if we assume that higher number of rabbits means means higher increase.

• Of course the growth of the population of rabbits from the previous exercises cannot go
forever as they will run out of available foot. Try to adjust the equation from the previous
task if we assume, moreover, that the maximum population that the food can support is
k.

• Use separation of variables to solve y′ = sin(x+ y). (Of course, one has to use some clever
substitution).

• Show that the operator L defined by (9) is linear (it satisfies (10)).

6 Difference equations

6.1 Linear difference equations with constant coefficients

This subsection is devoted to the study of difference equations. Namely, we are looking for an
unknown sequence {y(n)}∞n=1 which fulfills

y(n+ k) + p1y(n+ k − 1) + . . .+ pky(n) = an (22)
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where an is some given right hand side and p1, . . . , pk ∈ R are given coefficients. Such equation
is called ’linear difference equation of order k’.

Example: Assume that we have to pay a mortgage 200 000 USD. The interest of this
mortgage is 0.1% per month and we pay monthly 1 000 USD. Let denote the sum we owe in the
n−th month by y(n). Clearly, y(0) = 200 000. Clearly,

y(n+ 1) = 1.001y(n)− 1 000.

This might be rewritten as
y(n+ 1)− 1.01y(n) = −1 000.

Note that the left hand side of (22) is a linear operator. We proceed similarly as in the case
of the linear differential equations with constant coefficients. First of all, we find all solutions to
the homogeneous case

y(n+ k) + p1y(n+ k − 1) + . . .+ pky(n) = 0

and then we find one particular solution to non-homogeneous equation. The sum of these two
outcomes gives the set of all solutions to the given problem.

The assumed solution to the homogeneous problem is y(n) = λn. Thus, the characteristic
equation is

λk + p1λk−1 + p2λk−2 + . . .+ pk = 0.

Theorem 6.1. Let {λj = µj + iξj}kj=1 are roots of the characteristic equation of multiplicity νk.
Then the fundamental system is

{nαµnj sin
(
ξjn

π

2

)
, nαµnj cos

(
ξjn

π

2

)
, j ∈ {1, . . . k}, α ∈ {1, . . . , νj − 1}}.

Let go back to the mortgage example. The appropriate homogeneous equation is

λ− 1.001 = 0

which yields λ = 1.001 and thus the fundamental system is {1.001n}. All solutions to this
homogeneous problem are of the form y(n) = c1.001n where c ∈ R is an arbitrary constant.

Special right hand side: Let P (n) be a polynomial. One solution y(n) of equation

L(y) = αnP (n)

is of the form
y(n) = nmαnQ(n)

where m = 0 if α is not a root of the characteristic equation and m equals the multiplicity of the
root α otherwise, and Q(n) is a polynomial of degree at most degP (n).

Finally, we are able to conclude the mortgage example. We need to find one solution to

y(n+ 1)− 1.001y(n) = −1 000.

The right hand side is of the special form, namely α ≡ 1 and P (n) = 1 000 is a polynomial of
degree 0. As a result, one of the solution is of the form

y(n) = Q(n)
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where Q(n) = a ∈ R since it can be only 0 degree polynomial. Thus we obtain

a− 1.001a = −1 000

which yields a = 1 000 000. All solutions are of the form

y(n) = 1 000 000 + c1.001n

and since y(0) = 200 000 we deduce

y(n) = 1 000 000− 800 0001.001n.

6.2 Recurrence relations

Usually, sequences are given by explicit formula, for example a sequence an = 1
n is sequence

whose first few members are {1, 12 ,
1
3 ,

1
4 , . . .}.

Sequences might be given also by recurrence relation. For example:

an+1 = an + n+ 1, a1 = 1.

How to get an explicit formula from the recurrence relation? By guessing. First, we try to guess
the correct answer and then we verify our guess by induction. Recall that induction is a way
how to prove a claim of the form ∀n, V (n) and it consists of two steps:

• First we show V (1).

• Next we show that V (n)⇒ V (n+ 1) for all n ∈ N.

Let go back to
an+1 = an + n+ 1, a1 = 1.

The first few elements of this sequence are

1, 3, 6, 10, 15, . . .

We may deduce that the explicit formula might be

an =

(
n+ 1

2

)
.

Now it is enough to show that such defined an satisfies the given recurrence relation.
First, we have

a1 =

(
2
2

)
.

Next, we need to show that if an =

(
n+ 1

2

)
, then an+1 defined as an + n + 1 satisfies an+1 =(

n+ 2
2

)
. But we have

an + n+ 1 =

(
n+ 1

2

)
+

(
n+ 1

1

)
=

(
n+ 2

2

)
= an+1.

where we used the relation (
n
k

)
+

(
n

k + 1

)
=

(
n+ 1
k + 1

)
.
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Thus we have just verified that the sequence fulfilling

an+1 = an + n+ 1, a1 = 1

is the sequence

an =

(
n+ 1

2

)
=
n(n+ 1)

2
.

6.3 Exercises

• Try to find the relation for the n−th of the famous Fibonacci sequence (y(n+ 2) = y(n+
1) + y(n), y(0) = 1, y(1) = 1).

7 Series

Can be a sum of infinitely many positive number finite?

1
2

1
4

1
8

1

2
+

1

4
+

1

8
+

1

16
+ . . .

Recall, let q ∈ R. Then

(q + 1)(q − 1) = q2 − 1

(q2 + q + 1)(q − 1) = q3 − 1(
qn + qn−1 + qn−2 + . . .+ q + 1

)
(q − 1) = qn+1 − 1

We may infer that for q 6= 1 it holds that

qn + qn−1 + qn−2 + . . .+ q + 1 =
qn+1 − 1

q − 1

(
=

1− qn+1

1− q

)
which might be reformulated as

n∑
i=0

qi =
1− qn+1

1− q
.

We may proceed to a limit with n. Assume q ∈ (−1, 1). Then limn→∞ qn+1 = 0 and we infer
that

∞∑
i=0

qi =
1

1− q
.

Thus,

1

2
+

1

4
+

1

8
+

1

16
+ . . . =

∞∑
i=1

(
1

2

)i
=

∞∑
i=0

(
1

2

)i
− 1 =

1

1− 1
2

− 1 =
1
1
2

− 1 = 1.
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Or, equivalently,

1

2
+

1

4
+

1

8
+

1

16
+ . . . =

1

2

(
1 +

1

2
+

1

4
+

1

8
+ . . .

)
=

1

2

∞∑
i=0

(
1

2

)i
=

1

2

(
1

1− 1
2

)
= 1.

Definition 7.1. Let {ai}∞i=0 ⊂ R be a sequence. We define the n−th partial sum

sn =

n∑
i=0

ai.

If limn→∞ sn exists and is finite, than we say that
∑∞
i=0 ai converges and its value is limn→∞ sn.

If a sum does not converge, we say that it diverges.

Observation 7.1. Let
∑∞
i=0 ai converges, then limn→∞ an = 0.

Proof. It holds that
lim
n→∞

an = lim
n→∞

sn − sn−1 = 0

where the last equality is true because of the arithmetic of limits.

The last observation is quite intuitive. It states that if a sum of infinitely many numbers is
finite then necessarily, these numbers have to converge to zero.
Or, on the other hand, if a sequence of numbers has a nonzero limits, then their sum cannot be
finite.
Is this condition sufficient? Is it true that

lim
n→∞

an = 0⇒
∞∑
i=0

an <∞?

Consider
∑∞
i=1

1
i . We have(

1

i+ 1
+

1

i+ 2
+ . . .+

1

i2

)
> (i2 − i) 1

i2
= 1− 1

i

and therefore
1

i
+

1

i+ 1
+

1

i+ 2
+ . . .+

1

i2
> 1.

Thus, we may split the sum into infinitely many (finite) subsums each giving a number higher
than one. Therefore,

∞∑
i=1

1

i
=∞

despite the fact that limi→∞
1
i = 0.

Roughly speaking: If an tends to zero sufficiently fast,
∑∞
n=0 an converges. What does it mean

sufficiently fast and how we verify that?

7.1 Series of positive numbers

Throughout this subsection, we assume that an > 0 for every n ∈ {0, 1, 2, 3, . . .}.
Comparison criterion: Let {an}∞n=0 ⊂ R and {bn}∞n=0 ⊂ R fulfill an ≤ bn for every n ∈
{0, 1, 2, 3, . . .}. Then
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• if
∑∞
n=0 bn converges, then also

∑∞
n=0 an converges,

• if
∑∞
n=0 an diverges, then also

∑∞
n=0 bn diverges.

Example Does
∞∑
n=0

2n + n

5n

converge or diverge?
Since n ≤ 2n, we deduce

2n + n

5n
≤ 2n + 2n

5n
= 2

2n

5n

and since
∞∑
n=0

2
2n

5n
= 2

∞∑
n=0

(
2

5

)n
= 2

1

1− 2
5

<∞,

we get the convergence of the given series.

Comparison scales:

• It holds that
∞∑
n=0

qn

converges for q ∈ (0, 1) and diverges for q ≥ 1.

• It holds that
∞∑
n=1

1

np

converges for p > 1 and diverges for p ≤ 1.

Example Does
∞∑
n=1

√
n+ 1−

√
n

converge or diverge?
First, we deduce that

√
n+ 1−

√
n = 1√

n+1+
√
n

and we have 1√
n+1+

√
n
≥ 1

2
√
n+1

. Further

∞∑
n=1

1

2

1√
n+ 1

=
1

2

∞∑
n=2

1√
n

=
1

2

∞∑
n=2

1

n1/2

where the last series diverge. Therefore, we found a divergent series consisting of numbers lower
than the original series and we infer, that the given series diverges.

The d’Alambert criterion (ration test): Let {an}∞n=0 ⊂ R be a sequence of positive real
numbers. Then

• if limn→∞
an+1

an
< 1 then

∑∞
n=0 an converges,

• if limn→∞
an+1

an
> 1 then

∑∞
n=0 an diverges.

Remark 7.1. If limn→∞
an+1

an
= 1 then the ration test is insufficient as it cannot decide whether

the series converges or not.
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Example Let examine
∞∑
n=0

(n!)2

(2n)!
.

(First, recall that n! denotes a factorial of n which is defined as follows:0! = 1, n! = n(n − 1)!.)

We use the ration test with an = (n!)2

(2n)! . We have

lim
n→∞

((n+1)!)2

(2n+2)!

(n!)2

(2n)!

= lim
n→∞

((n+ 1)!)2

(n!)2
(2n)!

(2n+ 2)!

= lim
n→∞

(n+ 1)2
1

(2n+ 2)(2n+ 1)
= lim
n→∞

n2 + 2n+ 1

4n2 + 6n+ 2
=

1

4
.

Since 1
4 is strictly less than 1, the given sum is finite due to the ration test.

The Cauchy criterion (root test): Let {an}∞n=0 ⊂ R be a sequence of positive real numbers.
Then

• if limn→∞ n
√
an < 1 then

∑∞
n=0 an converges,

• if limn→∞ n
√
an > 1 then

∑∞
n=0 an diverges.

Remark 7.2. If limn→∞ n
√
an = 1 then the root test is insufficient as it cannot decide whether

the series converges or not.

Example Examine a sum
∞∑
n=1

(
n− 1

n+ 1

)n(n−1)
.

We use the root test. We have

lim
n→∞

n
√
an = lim

n→∞

(
n− 1

n+ 1

)(n−1)

= lim
n→∞

(
1− 2

n+ 1

)(n−1)

= e−2 < 1.

Therefore, the root test yields the convergence of the given sum.

7.2 Series of numbers with arbitrary sign

From now on we will consider sums
∑∞
n=0 an where, apriori, there is no assumption on the sign

of an.

Definition 7.2. Let
∞∑
n=0

|an|

converges. Then we say that
∑∞
n=0 an is absolutely convergent (or converges absolutely)

Observation 7.2. Let
∑∞
n=0 an converge absolutely. Then it converges.
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Example Does a sum
∞∑
n=1

sinn

n2

converge or diverge?
First, let examine the absolute convergence of the series. Consider a sum

∞∑
n=1

| sinn|
n2

.

We have
| sinn|
n2

≤ 1

n2

and since
∑∞
n=1

1
n2 converges, we obtain the absolute convergence of the given sum. Therefore,

the given sum converges.
The Leibnitz criterion Let {an}∞n=0 ⊂ R be a sequence of positive numbers such that

• limn→0 an = 0.

• an is a monotone sequence.

Then,
∞∑
n=0

(−1)nan

converges.
Example Consider the sum

∞∑
n=1

(−1)n
√
n

n+ 100
.

In order to use the Leibnitz criterion, we have to verify two assumptions. First of all

lim
n→∞

√
n

n+ 100
= lim
n→∞

1/
√
n

1 + 100
n

= 0

and the first assumption is true.
Next, let show that the sequence is monotone (i.e. decreasing). We have to verify that an+1 < an.
Since the members of the sequence are positive, we can instead verify that a2n+1 < a2n. We have

n

n2 + 200n+ 10000
>

n+ 1

n2 + 202n+ 10201

n3 + 202n2 + 10201n > n3 + 201n2 + 10200n+ 10000

n2 + n > 10000.

and we see, that starting from, say n = 100, the demanded inequality is true and the sequence
is decreasing. Since the finite number of terms does not matter, we may deduce that

∞∑
n=100

(−1)n
√
n

n+ 100

converges but this in turn implies that
∞∑
n=1

(−1)n
√
n

n+ 100

converges as well.
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table of derivatives, 27
tangens, 16
the Taylor polynomial, 31
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