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1 Vectors and vector spaces

1.1 Vector spaces

Definition 1.1. A set V endowed with operations + (sum) and . (multiplication by a real num-
ber) which satisfy u + v ∈ V for all u, v ∈ V and α.u ∈ V for all u ∈ V and α ∈ R is called
vector space (or a linear space) if the following properties are true:

i) u+ v = v + u for all u, v ∈ V ,

ii) u+ (v + w) = (u+ v) + w for all u,w ∈ V ,

iii) ∃0 ∈ V for which it holds that 0 + v = v for all v,

iv) for all v there is an element −v such that v + (−v) = 0,

v) α.(β.v) = (α.β).v for all α, β ∈ R and for all v ∈ V ,

vi) 1.v = v for all v ∈ V ,

vii) (α+ β).v = α.v + β.v for all α, β ∈ R and for all v ∈ V ,

viii) α.(v + w) = α.v + α.w for all α ∈ R and for all v, w ∈ V .

An element of the vector space is called vector.

Examples:

• The space of ordered pairs of real numbers (u, v) ∈ R2 with summation and product defined
as

(u1, v1) + (u2, v2) = (u1 + u2, v1 + v2), α(u1, v1) = (αu1, αv1)

for all (u1, v1), (u2, v2) ∈ R2 and α ∈ R is a vector space.

• In general, all ordered n−tuples of real numbers (u1, u2, . . . , un) ∈ Rn for n ∈ N form a
vector space.

• The set S of all (x, y) ∈ R2 satisfying

x+ 2y = 0 (1)

is a vector space. Since this is a subset of the vector space mentioned above, it is enough
to verify that ((x1, y1), (x2, y2) ∈ S) ⇒ (x1 + x2, y1 + y2) ∈ S and (α ∈ R&(x, y) ∈ S) ⇒
(αx, αy) ∈ S. So let (x1, y1) and (x2, y2) satisfy (1). Then (x1 + x2, y1 + y2) also satisfies
(1) since

x1 + x2 + 2(y1 + y2) = x1 + 2y1 + x2 + 2y2 = 0.

Next, let α ∈ R be arbitrary number and let (x, y) satisfies (1). Then

αx+ 2αy = α(x+ 2y) = 0

and (αx, αy) ∈ S.

• On the other hand, the set S of all pairs (x, y) ∈ R2 satisfying

x+ 2y = 1

is not a vector space. For example, a zero vector (0, 0) does not belong to S and the third
property from the definition of vector space is not fulfilled.
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• The set of polynomials is a vector space.

• The set of polynomials of degree 2 is not a vector space. In particular, a zero polynomial
does not belong to this set as the zero polynomial has not degree 2.

• On the other hand, the set of polynomials of degree 0, 1 or 2 is a vector space.

Definition 1.2. Let V be a vector space and let S ⊂ V be such that

i) ∀s1, s2 ∈ S, s1 + s2 ∈ S and

ii) ∀α ∈ R and ∀s ∈ S we have αs ∈ S.

Then S itself is a vector space and we say that S is a subspace of V . If S is nonempty and
S 6= V then we will say that S is a proper subspace.

Definition 1.3. Let V be a vector space, n ∈ N and {ui}ni=1 ⊂ V . Their linear combination is
any vector w of the form

w =

n∑
i=1

αiui

where αi are real numbers.

Examples:

• Consider a vector space R3. The vector (2, 5, 3) is a linear combination of (1, 1, 0) and
(0, 1, 1) because

(2, 5, 3) = 2(1, 1, 0) + 3(0, 1, 1).

• On the other hand, (0,−2, 1) is not a linear combination of (1, 1, 0) and (0, 1, 1). Indeed,
if it was, then there would be two numbers α and β such that

(0,−2, 1) = α(1, 1, 0) + β(0, 1, 1).

This equation can be rewritten as a system

0 = α

−2 = α+ β

1 = β

and we deduce that it is impossible to find α and β such that these equations are fulfilled.

Definition 1.4. The set of all linear combinations of v1, v2, . . . , vn is called a linear span of a
set {v1, v2, . . . , vn}. Precisely,

span{v1, v2, . . . , vn} =

{
n∑
i=1

αivi, αi ∈ R

}
.

Definition 1.5. Vectors v1, v2, . . . , vn ∈ V are said to be linearly dependent if the equation

α1v1 + α2v2 + . . .+ αnvn = 0

has a nontrivial solution (i.e. a solution α1, α2, . . . , αn where at least one coefficient is zero).

Vectors v1, v2, . . . , vn ∈ V are linearly independent if the equation

α1v1 + α2v2 + . . .+ αnvn = 0

has only solution α1 = α2 = . . . = αn = 0.
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Definition 1.6. Let V = span{v1, v2, . . . , vn}. Then we say that {v1, v2, . . . , vn} generates V .

Observation 1.1. Let v1, v2, . . . , vn be linearly dependent. Then one of the vectors is a lin-
ear combination of the remaining vectors. Precisely, there is i ∈ {1, . . . , n} such that vi ∈
span{{v1, v2, . . . , vn} \ {vi}}.

Proof. According to assumptions, there is i ∈ {1, . . . , n} such that

α1v1 + α2v2 + . . .+ αnvn = 0

has a solution with αi 6= 0. Assume, without lost of generality, that i = 1. We may rearrange
the equation as

v1 = −α2

α1
v2 −

α3

α1
v3 − . . .−

αn
α1
vn.

Corollary 1.1. Let v1 ∈ span{v2, . . . , vn}. Then

span{v2, . . . , vn} = span{v1, v2, . . . , vn}.

Proof. Clearly, span{v2, . . . , vn} ⊂ span{v1, v2, . . . , vn}. Next, let

v =

n∑
i=1

αivi.

Since v1 =
∑n
i=2 βivi for some βi ∈ R, we get

v =

n∑
i=2

(αi + α1βi)vi

and v ∈ span{v2, . . . , vn}.

Definition 1.7. Let {v1, . . . , vn} be a set of linearly independent vectors that generates V . Then
{v1, . . . , vn} is a basis of V .

Theorem 1.1. Every two basis of a vector space V has the same number of elements.

Definition 1.8. We say that V is of dimension n ∈ N iff every basis has n elements.

Examples:

• The set {(1, 0), (0, 1)} ⊂ R2 is a basis. Indeed, every vector (a, b) ∈ R2 can be written as
a(1, 0)+b(0, 1). Moreover, the vectors are linearly independent since α1(1, 0)+α2(0, 1) = 0
has only the trivial solution. Thus, the dimension of R2 is 2.

• Vectors {1, x, x2} form a basis of a vector space containing polynomials of degree at most
two. The dimension of this vector space is thus 3.

1.2 Some exercises

:

1. Let (a, b) be a multiple of (c, d) with abcd 6= 0. Show that (a, c) is a multiple of (b, d).

2. Consider R2 with sum defined as follows: (a, b) + (c, d) = (a + d, b + c) and with a usual
multiplication. Is such space a vector space?
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2 Matrices

2.1 Notions

Definition 2.1. A matrix is a table of numbers arranged in rows and columns. Namely, let m,n
be natural numbers. Then

A =


a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn

 = (aij)
m,n
i=1,j=1

The matrix A has m−rows and n−columns. The matrix A is said to be of type (m,n).

Example A matrix (
2 3 0
−1 2 −1

)
has two rows and three columns and it is of type (2, 3) (or it is of type two by three).

Operations with matrices Let A = (aij)
m,n
i=1,j=1 and B = (bij)

m,n
i=1,j=1 be two matrices of

the same type. Then we define

A+B = (aij + bij)
m,n
i=1,j=1.

Let α ∈ R. Then αA = (αaij)
m,n
i=1,j=1.

For a matrix A = (aij)
m,n
i=1,j=1 we define a transpose matrix AT as

AT = (aji)
n,m
j=1,i=1

Let A be of type (m,n) and B be of type (n, p). Then C := AB of type (m, p) is defined as

C = (cij)
m,p
i=1,j=1

where

cij =

n∑
k=1

aikbkj .

Example

• (
1 −1 2 0
0 0 1 −2

)
+

(
2 2 2 −5
1 1 −3 4

)
=

(
3 1 4 −5
1 1 −2 2

)
.

•

3

 1 1
2

2 2
−3 1

 =

 3 3
2

6 6
−9 3


• (

1 0
0 1

)T
=

(
1 0
0 1

)
or (

1 1 3
2 −1 1

)T
=

1 2
1 −1
3 1
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or

(
3 −1 −1 0

)T
=


3
−1
−1
0


• (

−1 1 0
2 0 1

) 2 −1
−1 −1
0 1

 =

(
−3 0
4 −1

)
.

Remark 2.1. Matrices of a given type (m,n) forms a vector space.

Remark 2.2. Warning:
AB 6= BA.

Definition 2.2. A rank of matrix A is a dimension of vector space generated by its columns. It
is denoted by rankA.

Observation 2.1. It holds that rankA = rankAT .

Definition 2.3. Elementary transformation of a matrix is

• scaling the entire row with a nonzero real number or

• interchanging the rows within a matrix or

• adding α−multiple of one row to another for an arbitrary α ∈ R.

Let A arise from B by an elementary transformation. Then we write A ∼ B.

Example (
2 1
−1 2

)
∼
(
−1 2
2 1

)
∼
(
−2 4
2 1

)
∼
(
−2 4
6 −7

)
.

Definition 2.4. A leading coefficient of a row is the first non-zero coefficient in that row. We
say that matrix A is in echelon form if the leading coefficient (also called the pivot) of a nonzero
row is always strictly to the right of the leading coefficient of the row above it.

Example Consider following matrices:

A =


−1 −1 3 0
0 0 2 1
0 0 0 −1
0 0 0 0

 B =


−1 −1 3 0
0 2 2 1
1 0 −1 −1
0 0 0 3


The matrix A is in echelon form whereas the matrix B is not in echelon form.

Observation 2.2. Let A be in echelon form. Then its rank is equal to the number of non-zero
rows.

The Gauss elimination method
The Gauss elimination method is a sequence of elementary transformations which transform a
given matrix A into an echelon form. As an example, we take a matrix

A =

2 2 −2
4 1 0
5 2 −1

 .
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In the first step, we use elementary transformation in order to get rid of 4 in the second row and
5 in the last row. So we add (−1) times the first row to the second and −5/2 times the first row
to the last one. We get

A ∼

2 2 −2
0 −3 4
0 −3 4

 .

Next, we want to eliminate the second element in the last row. In order to do so, we add (−1)
times the secon row to the last one to get2 2 −2

0 −3 4
0 −3 4

 ∼
2 2 −2

0 −3 4
0 0 0

 ∼ (2 2 −2
0 −3 4

)
.

Here we use the fact that the zero row can be ommitted without any serious consequence.

As a remark we want to point out that A has a rank two and that means that the vectors
(2, 2,−2), (4, 1, 0) and (5, 2,−1) are linearly dependent.

2.2 Systems of linear equations

Systems of equations
We are going to deal with system of m linear equations with n unknowns x1, x2, . . . , xn.

a11x1 + a12x2 + . . .+ a1nxn = b1

a21x1 + a22x2 + . . .+ a2nxn = b2

... =
...

am1x1 + am2x2 + . . .+ amnxn = bm

We use notation x = (x1, x2, . . . , xn), b = (b1, b2, . . . , bn) and A = (aij)
mn
i=1,j=1. Then the above

system may be rewritten as
AxT = bT .

The system of equations will be represented by an augmented matrix – i.e. a matrix (A|bT )
where A = (ai,j)

mn
i=1,j=1 and bT is the column on the right hand side. For example, a system of

equations

2x+ 5y = 10

3x+ 4y = 24

is represented by an augmented matrix(
2 5 | 10
3 4 | 24

)
.

Such matrix consists of two parts – matrix A =

(
2 5
3 4

)
and a vector of right hand side b =

(10, 24). Let solve the system by Gauss elimination:(
2 5 | 10
3 4 | 24

)
∼
(

6 15 | 30
3 4 | 24

)
∼
(

6 15 | 30
6 8 | 48

)
∼
(

6 15 | 30
0 −7 | 18

)
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The last row of the last matrix represent an equation

−7y = 18 ⇒ y = −18

7
.

The first row of the last matrix represent

6x+ 15y = 30

and once we plug there y = − 18
7 we deduce

x =
80

7
.

Theorem 2.1 (Frobenius). A system of linear equations has solution if and only if rankA =
rank(A|bT ).

Example: Solve

−x+ y + z = 0

2y + x+ z = 1

2z + 3y = 2.

We have −1 1 1 | 0
1 2 1 | 1
0 3 2 | 2

 ∼
−1 1 1 | 0

0 3 2 | 1
0 3 2 | 2

 ∼
−1 1 1 | 0

0 3 2 | 1
0 0 0 | 1


and, according to the Frobenius theorem, there is no solution to the given system. Let us
emphasize that the last row represents an equation

0x+ 0y + 0z = 1.

Example Let find all solutions to the system

2x+ y − z = 3

x− 2y + 3z = −1

We use the Gauss elimination in order to deduce(
2 1 −1 | 3
1 −2 3 | −1

)
∼
(

1 −2 3 | −1
2 1 −1 | 3

)
∼
(

1 −2 3 | −1
0 5 −7 | 5

)
The red terms are the leading terms. The corresponding unknowns should be expressed by
others. The unknown which does not have a corresponding leading term should be chosen as a
parameter. Here we take z = t where t ∈ R is a parameter. The last row of the last matrix yields
5y − 7t = 5 and thus y = 7

5 t + 1. We deduce from the first row that x = 1 − 1
5 t. All solutions

are of the form

(x, y, z) = (1, 1, 0) + t

(
−1

5
,

7

5
, 1

)
.
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2.3 Inverse matrices

Definition 2.5. A matrix I of type (n, n) is called an identity matrix if I = (aij)
nn
i=1,j=1, aii = 1

for all i ∈ {1, . . . , n} and aij = 0 whenever i 6= j. For example,

I =

1 0 0
0 1 0
0 0 1


for n = 3. It holds that AI = IA = A for every matrix A of type (n, n).

Let A by a matrix of type (n, n). If there is a matrix B of type (n, n) such that

AB = BA = I

then B will be called an inverse matrix to A and we use notation B = A−1.

The Gauss elimination may be used to find A−1. In particular, one has to write down an
augmented matrix (A|I) and use elementary transformations to get (I,B). If this is possible,
then B = A−1.

Example Find A−1 to A =

(
2 −1
3 −3

)
:

(
2 −1 | 1 0
3 −3 | 0 1

)
∼
(

2 −1 | 1 0
1 −2 | −1 1

)
∼
(

1 −2 | −1 1
2 −1 | 1 0

)
∼
(

1 −2 | −1 1
0 3 | 3 −2

)
∼
(

1 −2 | −1 1
0 1 | 1 − 2

3

)
∼
(

1 0 | 1 − 1
3

0 1 | 1 − 2
3

)
Consequently, A−1 =

(
1 − 1

3
1 − 2

3

)
.

Definition 2.6. A square matrix is a matrix of type (n, n) for some n ∈ N.
A square matrix A is called regular if there is A−1. Otherwise it is called singular.

Observation 2.3. Let A be a regular matrix. Then a system AxT = bT has a unique solution.

Proof. Indeed, it suffices to apply A−1 from the left side on both sides of equation

AxT = bT

to obtain
xT = A−1bT .

Example The above proof describes another way how to solve a system of equations.
Namely, we can first find A−1 and then xT = A−1bT . Let solve the following two systems

2x+ y + z = 3

x+ 3z = −7

2x+ y = 1

and

2x+ y + z = 0

x+ 3z = 3

2x+ y = −1.
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Note that the matrix A of the systems (without the right hand side) is always the same. We
compute A−1 as follows2 1 1 | 1 0 0

1 0 3 | 0 1 0
2 1 0 | 0 0 1

 ∼
1 0 3 | 0 1 0

2 1 1 | 1 0 0
2 1 0 | 0 0 1


∼

1 0 3 | 0 1 0
0 1 −5 | 1 −2 0
0 1 −6 | 0 −2 1

 ∼
1 0 3 | 0 1 0

0 1 −5 | 1 −2 0
0 0 −1 | −1 0 1


∼

1 0 3 | 0 1 0
0 1 −5 | 1 −2 0
0 0 1 | 1 0 −1

 ∼
1 0 0 | −3 1 3

0 1 0 | 6 −2 −5
0 0 1 | 1 0 −1


Thus, the first system has a solutionxy

z

 =

−3 1 3
6 −2 −5
1 0 −1

 3
−7
1

 =

−13
27
2


and the second system has a solutionxy

z

 =

−3 1 3
6 −2 −5
1 0 −1

 0
3
−1

 =

 0
−1
1

 .

2.4 Determinant

Definition 2.7. Let A be a square matrix of type (1, 1) – i.e., A = (a) for some a ∈ R. The
determinant of such matrix A is detA = a.
Let A = (ai,j) be a square matrix of type (n, n). We denote by Mij the determinant of a
matrix (n− 1, n− 1) which arises from A by leaving out the i−th row and j−th column. Choose
k ∈ {1, . . . , n}. Then

detA = (−1)k+1ak1Mk1 + (−1)k+2ak2Mk2 + . . .+ (−1)k+naknMkn =

n∑
j=1

(−1)k+jakjMkj .

Examples:
Let

A =

(
a11 a12

a21 a22

)
.

Then detA = a11a22 − a12a21.
Let

A =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 .

Then

detA = a11a22a33 + a12a23a31 + a13a21a32 − a13a22a31 − a12a21a33 − a11a23a32.

Observation 2.4.
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• Let B arise from A by multiplying one row by a real number α. Then detB = α detA.

• Let B arise from A by switching two rows. Then detB = −detA.

• Let B arise from A by adding α−multiple of one row to another one. Then detB = detA.

Observation 2.5. Let A be a square matrix having zeros under the main diagonal (i.e., aij = 0
for i > j). Then detA = a11a22a33 . . . ann.

Example Compute detA for

A =


−1 1 0 2
0 3 −3 1
2 −3 0 2
0 0 3 −1

 .

According to the rules for transformations, we have

det


−1 1 0 2
0 3 −3 1
2 −3 0 2
0 0 3 −1

 = det


−1 1 0 2
0 3 −3 1
0 −1 0 6
0 0 3 −1



= −det


−1 1 0 2
0 −1 0 6
0 3 −3 1
0 0 3 −1

 = −det


−1 1 0 2
0 −1 0 6
0 0 −3 19
0 0 3 −1



= −det


−1 1 0 2
0 −1 0 6
0 0 −3 19
0 0 0 18

 = 54.

Theorem 2.2. Let A be n× n matrix. Statements following are equivalent:

• detA = 0.

• AxT = 0 has a nontrivial solution.

• A is a singular matrix matrix.

• rankA = n.

• Rows of A are linearly dependent vectors.

• Columns of A are linearly dependent vectors.

Theorem 2.3 (the Cramer rule). Consider a system AxT = bT . Assume that A is a regular
n by n matrix. Let j ∈ {1, . . . , n} and denote by Aj a matrix arising from A by replacing j−th
column by a vector bT . Then

xj =
detAj
detA

.
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Example We use the Cramer rule to solve

3x− 2y + 4z = 3

−2x+ 5y + z = 5

x+ y − 5z = 0

We have A =

 3 −2 4
−2 5 1
1 1 −5

 and detA = −88.

Further, Ax =

3 −2 4
5 5 1
0 1 −5

 and detAx = −108. Consequently, x = −108
−88 = 27

22 .

Next, Ay =

 3 3 4
−2 5 1
1 0 −5

 and detAy = −122. Consequently y = −122
−88 = 61

44 .

Finally, Az =

 3 −2 3
−2 5 5
1 1 0

 and detAz = −46. Consequently z = −46
−88 = 23

44 .

2.5 Eigenvalues and eigenvectors

Definition 2.8. Let A be a square matrix. We are looking for λ for which there is a nontrivial
solution to

AxT = λxT .

Such number λ is called eigenvalue.

This means that
(A− λI)xT = 0.

This equation has a nontrivial solution only if A − λI is a singular matrix. Consequently, λ is
an eigenvalue if and only if

det(A− λI) = 0.

Definition 2.9. Let λ be an eigenvalue of A. A vector v solving

(A− λI)v = 0

is called an eigenvector corresponding to λ.

Remark 2.3. If v is an eigenvector then tv is also an eigenvector for all t ∈ R.
Let v and w be eigenvectors corresponding to the same eigenvalue. Then tv + sw is also an
eigenvector for all t, s ∈ R.
Generally, let ui, i = {1, . . . , k} be eigenvectors corresponding to λ. Then all their linear combi-
nations are also eigenvectors corresponding to λ.
In what follows, if we say that there is only one eigenvector v, we mean that there is just one-
dimensional space of eigenvectors spanned by v. If we say that there are two eigenvectors v, w,
we mean that there is two-dimensional space of eigenvectors spanned by v, w. And so on.
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Example Find all eigenvalues and eigenvectors to A =

(
5 1
4 5

)
.

First, we find eigenvalues by solving

0 = det

((
5 1
4 5

)
− λ

(
1 0
0 1

))
= det

(
5− λ 1

4 5− λ

)
= 25− 10λ+ λ2 − 4 = λ2 − 10λ+ 21.

We obtain
λ1 = 3, λ2 = 7.

Consider first λ1 = 3. Then we have to solve

(
2 1
4 2

)(
x
y

)
= 0. We have(

2 1
4 2

)
∼
(
2 1

)
and we take y = t and x = − t

2 . Thus (x, y) = t(−1/2, 1) and v1 = (−1/2, 1) is an eigenvector
related to λ = 3.

Consider λ2 = 7. Then (
−2 1
4 −2

)
∼
(
−2 1

)
.

and we take y = t and x = t
2 . Consequently, v2 = (1/2, 1) is an eigenvector related to the

eigenvalue λ = 7.

Exercise: Find eigenvalues and eigenvectors to A =

(
10 −9
4 −2

)
.

First, we have to solve

0 = det

(
10− λ −9

4 −2− λ

)
= λ2 − 8λ+ 16.

This yields the only solution λ1 = 4. To find an eigenvector we solve(
6 −9
4 −6

)
∼
(
2 −3

)
.

Thus, (3/2, 1) is an eigenvector.

Exercise: Find eigenvalues and eigenvectors to A =

(
1 0
0 1

)
.

Solve

0 = det

(
1− λ 0

0 1− λ

)
= (1− λ)2.

We get λ = 1. To find eigenvalues we have to solve(
0 0
0 0

)
∼
(
0 0

)
.

The solutions are of the form s(1, 0) + t(0, 1) for all real numbers s, t ∈ R.

Summary Let λ be a single root of det(A − λI). Then there is just one corresponding
eigenvector. Let λ be a double root of det(A − λI). Then there might be one corresponding
eigenvector or two corresponding eigenvectors.
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2.6 Some exercises

1. Write X = ATA− 2A for A =

(
3 −1
0 2

)
.

2. Find a matrix X such that XA = B where A =

(
2 1
−4 −3

)
and B =

(
2 2
6 4

)
.

3. Prove Observation 2.2 for a matrix 3× 3.

4. Prove Observation 2.5 for a matrix 3× 3 and 4× 4.

5. Find all eigenvectors and eigenvalues for A =

(
−2 −8
1 2

)
. This time you should consider

complex numbers.

3 Euclidean space

3.1 Euclidean space, Distance

Euclidean space
We consider a space Rn = {(x1, x2, . . . , xn), x1, . . . , xn ∈ R} – n−tuples can be understood as
points or as vectors. Points cannot be added together, however, A + v is a point for arbitrary
point A and arbitrary vector v. Simultaneously, B − A is a vector for every two points A and
B. We denote this vector by ~AB. Here A = (5, 3), B = (1,−2) and ~AB = B −A = (−4,−5). It

x1

x2

A

B

51

3

−2

holds that B = A+ ~AB.

Distance
Let A = (a1, a2) and B = (b1, b2) be points in the two dimensional space. The Pythagorean
theorem yields that

%(A,B) =
√

(a1 − b1)2 + (a2 − b2)2.

This can be generalized to n dimensions as follows:

Definition 3.1. Let A and B be points in Rn. Then we define the distance between A and B
as

%(A,B) =

√√√√ n∑
i=1

(ai − bi)2.

16



x1

x2

A

B
a1 − b1

a2 − b2

Example: The distance between A = (1,−3, 5) and B = (2, 4, 0) is
%(A,B) =

√
(1− 2)2 + (−3− 4)2 + (5− 0)2 =

√
75.

Observation 3.1. Let A,B,C be points in Rn. Then

• %(A,B) ≥ 0,

• %(A,B) = 0 ⇔ A = B,

• %(A,B) = %(B,A),

• %(A,C) ≤ %(A,B) + %(B,C).

3.2 Scalar product, norm and angles

Definition 3.2. : Let u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn). Then we define a scalar
product of u and v as

u · v = u1v1 + u2v2 + . . .+ unvn

Observation 3.2. Let u, v, w ∈ Rn be arbitrary vectors and α ∈ R. Then:

• u · v = v · u,

• u · (v + w) = u · v + u · w,

• (αu) · v = α(u · v),

• u · u ≥ 0 and u · u = 0 ⇔ u = 0.

Definition 3.3. A norm of a vector v ∈ Rn is a number

‖v‖ =
√
v · v

Observation 3.3. Let u, v ∈ Rn be arbitrary vectors and α ∈ R. Then:

• ‖v‖ ≥ 0,

• ‖v‖ = 0 ⇔ v = 0,

• ‖αv‖ = |α|‖v‖,

• ‖u+ v‖ ≤ ‖u‖+ ‖v‖,

• |u · v| ≤ ‖u‖‖v‖.

17



Proof. The first, second and third properties follows directly from the definition.
To prove the fifth property we consider a vector u+ tv, t ∈ R. It holds

0 ≤ (u+ tv) · (u+ tv) = ‖u‖2 + 2t(u · v) + t2‖v‖2.

The right hand side is a second order polynomial of variable t. Since it is always positive, its
discriminant should be negative. Thus

4(u · v)2 − 4‖u‖2‖v‖2 < 0.

This directly yields the claim.
To prove the fourth property it is enough to write

‖u+ v‖2 = (u+ v) · (u+ v) = ‖u‖2 + 2u · v + ‖v‖2

≤ ‖u‖2 + 2‖u‖‖v‖+ ‖v‖2 = (‖u‖+ ‖v‖)2.

Recall also that
%(A,B) = ‖ ~BA‖.

This follows directly from the definitions.

Definition 3.4. An angle between two nonzero vectors u, v ∈ Rn is a number ϕ ∈ [0, π] fulfilling

cosϕ =
u · v
‖u‖‖v‖

.

Example Consider a triangle ABC where A = (2, 0, 4), B = (1, 5, 3) and C = (−1, 2, 3).
Lets determine the length of the sides of the triangle and lets determine all internal angles. We
have

%(A,B) =
√

12 + 52 + 12 =
√

27, %(A,C) =
√

14, %(B,C) =
√

13.

Let α = ^BAC. We have

cosα =
~AB · ~AC

‖ ~AB‖‖ ~AC‖
=

14√
27
√

14
=

√
14

27

and we use a calculator to deduce α = 0.7669. Next, γ = ^ACB fulfills

cos γ =
~AC · ~BC

‖ ~AC‖‖ ~BC‖
=

0

‖ ~AC‖‖ ~BC‖
= 0

and γ = π
2 .

Remark 3.1. We would like to recall that vectors u, v ∈ Rn are perpendicular iff u · v = 0.

In what follows we will use symbols i = (1, 0, 0), j = (0, 1, 0) and k = (0, 0, 1).

Definition 3.5. Let u = (u1, u2, u3) and v = (v1, v2, v3) be vectors in R3. We define their cross
product (or vector product) as

u× v = det

 i j k
u1 u2 u3

v1 v2 v3

 .

Thus
u× v = (u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1).

18



Example As an example, let compute

(−3, 2, 1)× (1, 0, 5) = (10− 0, 1− (−15), 0− 2) = (10, 16,−2).

Observation 3.4. Let u, v, w ∈ R3 be arbitrary vectors and α ∈ R. Then

• u× v = −v × u,

• (αu)× v = α(u× v),

• u× (v + w) = u× v + u× w,

• let z = u× v. Then z · u = 0 and z · v = 0,

• assume that u is a nonzero vector, then u× v = 0 if and only if v = tu for some t ∈ R.

Warning It is not true that u× (v × w) = (u× v)× w for all u, v, w ∈ R3.

Definition 3.6. Let u, v, w ∈ R3 be vectors. Their triple product (also a box product or mixed
product) is a number

u · (v × w).

It holds that

u · (v × w) = v · (w × u) = w · (u× v) = det

uv
w

 .

Further properties of the cross product and triple product

Observation 3.5. Let u, v ∈ R3. Then ‖u× v‖ = sinφ‖u‖‖v‖.

Example Compute the surface of a triangle ABC where A = (2, 0,−1), B = (3, 2, 1) and

C = (−2, 5, 2). Denote u = ~AB = (1, 2, 2) and v = ~AC = (−4, 5, 3). The surface of the

B

C

A

D

parallelogram ABCD is ‖u× v‖. Thus, the surface of the triangle is thus

1

2
‖u× v‖ =

1

2
‖(1, 2, 2)× (−4, 5, 3)‖ =

1

2
‖(−4,−11, 13)‖ =

1

2

√
306 ≈ 8.7.

Observation 3.6. The volume of a parallelepiped generated by three vectors a, b, c ∈ R3 is equal
to |a · (b× c)|.
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a

b

c

3.3 Lines

Let A,B ∈ Rn. The line (determined uniquely) passing through A and B consists of points

X = A+ t ~AB, t ∈ R.

Recall that ~AB = B − A, thus for t = 0 we get X = A, for t = 1 we get X = B. Thus,
X = A+ t ~AB, t ∈ [0, 1] is an equation of the line segment AB. For t = 1/2 we get the midpoint
S of the line segment AB and thus we can write

S = A+
1

2
(B −A) = A+

1

2
B − 1

2
A =

1

2
(A+B).

The vector ~AB is called a direction vector. The parametric equations are not uniquely given. A
point C belongs to a line X = A+ tv, t ∈ R if there is t′ ∈ R such that C = X + t′v.

The mutual position of two lines
Two lines p : X = A+ tv and q : X = B + tu are

• identical, if u‖v and A ∈ q,

• parallel, if u‖v and A /∈ q,

• intersecting lines, if u is not parallel to v and there is a point P ∈ p ∩ q. The point P is
called an intersection,

• skew lines, if u is not parallel to v and there is no intersection.

Example Find a mutual position of AB and CD for A = (2,−5,−2), B = (0,−3, 0), C = (4, 1, 2)
and D = (−1,−2, 1).
We have

p : X = (2,−5,−2) + t(−2, 2, 2), q : X = (4, 1, 2) + t(−5,−3,−1).

Clearly, (−2, 2, 2) and (−5,−3,−3) are not parallel to each other. Is there an intersection? If
yes, then there are s, t ∈ R such that

P = (2,−5,−2) + t(−2, 2, 2) = (4, 1, 2) + s(−5,−3,−1)

and we deduce

2− 2t = 4− 5s

−5 + 2t = 1− 3s

−2 + 2t = 2− s.
(2)
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We reformulate this as

5s− 2t = 2

3s+ 2t = 6

s+ 2t = 45 −2 | 2
3 2 | 6
1 2 | 4

 ∼
1 2 | 4

5 −2 | 2
3 2 | 6

 ∼
1 2 | 4

0 −12 | −18
0 −4 | −6

 ∼ (1 2 | 4
0 2 | 3

)
.

We get t = 3/2 and s = 1. These two lines are intersection lines and the point of intersection is
(−1,−2, 1).

Distance between a point and a line
The distance between A and a line p : X = B + t ~BC is

inf
X∈p

%(A,X).

Problem Find a distance between A = (2, 3) and p : X = (1, 0) + t(−1, 1).
We have to find a minimum of %(A,X(t)) = ‖A−X(t)‖ = ‖(1, 3)− t(−1, 1)‖ =

√
(1 + t, 3− t).

That is
√

(1 + t)2 + (3− t)2. It is enough to find a minimum of f(t) = (1 + t)2 + (3 − t)2 =
2t2 − 4t+ 10. We have f ′(t) = 4t− 4 and the minimum is at the point t = 1. We have f(1) = 8
and the distance is

√
8.

Distance between two lines
The distance between two identical lines is zero. The distance between intersecting lines is also
zero. The distance between two parallel lines p : X = A+ tv and q : X = B + tu is the distance
between A and q. The distance between two skew lines will be defined later.
Lines in two dimensions
Consider a line

p :
x = a+ ut
y = b+ vt

passing through A = (a, b) and with a direction vector (u, v). Assume u 6= 0. Then we may
deduce from the first equation that t = 1

u (x − a). We plug this into the second equation to get
y = b+ v

u (x− a) which is equivalent to

− v
u
x+ y − b+

v

u
a = 0.

Note that
(
− v
u , 1
)

is perpendicular to (u, v).
The latter equation is called a normal form of a line. .

Example Find a normal form of a line

p :
x = 1 + 2t
y = 1− t.

The direction vector is (2,−1) and the normal vector is (1, 2) (one of many). Consequently, the
normal form is

x+ 2y + c = 0 (3)

for certain value of c ∈ R. We know that (1, 1) ∈ p and thus (3) should be satisfied for x = 1,
y = 1. We obtain c = −3 and the resulting normal form is

x+ 2y − 3 = 0.
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3.4 Planes in 3 dimensions

Let A,B,C ∈ R3 be points which are not collinear (there is no line passing through all of them).

Then u = ~AB and v = ~AC are not parallel and the (uniquely determined) plane ABC consists
of points in a form

X = A+ su+ tv, s, t ∈ R.

B

C

A

X

Mutual position of a line and a plane
Let have a plane X = A + tu + sv and a line X = B + rw. Their intersection consists of all
points for which there are parameters r, t, s ∈ R such that

A+ tu+ sv = B + rw.

There might be infinitely many points in the intersection – in that case the line belongs to the
plane – there might be just one point in the intersection – in that case the line intersects the
plane – or there might be no intersection at all – in that case the line is parallel to the plane.

Example: Find the mutual position of a line p : DE and a plane σ : ABC where

A = (1, 2,−3), B = (3, 0, 2), C = (0, 2, 3), D = (1, 1, 2), E = (3, 2, 0).

We deduce

p : X = (1, 1, 2) + r(2, 1,−2),

σ : X = (1, 2,−3) + t(2,−2, 5) + s(−1, 0, 6).

Thus

1 + 2r = 1 + 2t− s
1 + r = 2− 2t

2− 2r = −3 + 5t+ 6s.

and this might be reformulated as

2r + s− 2t = 0

r + 2t = 1

−2r − 6s− 5t = −5

We solve this by the Gauss elimination 2 1 −2 | 0
1 0 2 | 1
−2 −6 −5 | −5

 ∼
 1 0 2 | 1

2 1 −2 | 0
−2 −6 −5 | −5


∼

1 0 2 | 1
0 1 −6 | −2
0 −6 −1 | −3

 ∼
1 0 2 | 1

0 1 −6 | −2
0 0 −37 | −15
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and we get t = 15/37, s = 16/37, r = 7/37. Therefore, there is an intersection consisting of a
point

P =

(
51

37
,

44

37
,

60

37

)
.

Normal form of a plane
Normal form of a plane is an equation

ax+ by + cz + d = 0.

Here (a, b, c) is a vector perpendicular to the direction vectors u and v. Let σ be given by

σ : X = (−7, 0, 0) + t(−2,−3, 0) + s(7, 12, 3).

A vector perpendicular to u = (−2,−3, 0), v = (7, 12, 3) can be obtained (for example) as
n := u× v. We get

n = (−9, 6,−3)

and the equation is of the form
−9x+ 6y − 3z + d = 0

and since (−7, 0, 0) is in the plane, we obtain d = −63. We can further divide the whole equation
by 3 to get

−3x+ 2y − z − 21 = 0.

Example: Determine the distance between the plane σ : 3x−2y+z+21 = 0 and A = (3, 0,−2).

Clearly, the point P in the plane which is nearest to A should satisfy that ~PA is perpendicular
to both direction vectors (and thus it is parallel to the normal vector). In particular, the direction
vector of the line PA is (3,−2, 1) and thus it can be written as

p : X = (3, 0,−2) + t(3,−2, 1).

Let find an intersection of p and σ. Since such point should be in p, we get x = 3 + 3t, y = −2t,
z = −2 + t and we plug these relations into the normal form. We obtain

9 + 9t+ 4t− 2 + t+ 21 = 0

which yields t = −2 and the intersection is P = (−3, 4,−4). Thus, the distance between A and
σ is

%(A,P ) =
√

62 + 42 + 22 =
√

56.

Based on the same considerations as above we may deduce the following.

Observation 3.7. The distance between X = (x0, y0, z0) and σ : ax+ by+ cz+d = 0 is equal to

|ax0 + by0 + cz0 + d|√
a2 + b2 + c2

.

The distance between two skew lines
Let p : X = A + tu and q : X = B + tv be two skew lines. Then the distance between them is
equal to the distance between line p and a plane σ : X = B+ rv+ su. (Note that p and σ has no
intersection and thus the distance between p and σ is equal to the distance between A and σ.)
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r

(x0, y0)

3.5 Few words about topology

Definition 3.7. An open ball centered at (x0, y0) ∈ R2 with radius r ∈ (0,∞) is a set

Br(x0, y0) = {(x, y) ∈ R2, ‖(x, y)− (x0, y0)‖ < r}.

Definition 3.8. A set M ⊂ R2 is open if for every (x0, y0) ∈ M there is r > 0 such that
Br(x0, y0) ⊂M .
A set M is called closed if R2 \M is open.

Example A set M := (0, 1) × (0, 1) is open. Indeed, let (a, b) ∈ M . Define δ = min{a, b, 1 −
a, 1 − b}. Since a ∈ (0, 1) and b ∈ (0, 1) we have δ > 0. Necessarily, Bδ/2(a, b) ⊂ M . On the
other hand, a set M := [0, 1] × (0, 1) is not open. Consider for example a point (1, 1/2) ∈ M .
Then every ball Br(1, 1/2) contains a point (1 + r/2, 1/2) which is outside of M . Note that M
is not closed. Why?

Remark 3.2. • ∅ and R2 are open sets (and closed sets as well),

• a union of open sets is an open set,

• an intersection of two open sets is an open set,

• a union of two closed sets is a closed set,

• an intersection of closed sets is a closed set.

Observation 3.8. Let f : R2 7→ R be a continuous function. Then f−1(A) is an open set for
every A ⊂ R open. Similarly, f−1(B) is a closed set for every B ⊂ R closed.

Question What is a continuous function? We will see later.
For now: A projection p : R2 7→ R, p(x, y) = x is a continuous function (as well as projection
q(x, y) = y). A sum, difference and product of two continuous functions are continuous functions.
A quotient of two continuous function is again a continuous function. A composition of two
continuous function is a continuous function.

Example Let consider a set

M := {(x, y), x ∈ (−1, 1), y < x2}.
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Is this set open? First, f(x, y) = |x| is a continuous function. Indeed, f(x, y) = |p(x, y)| is a
composition of p and | · |. Thus, f−1((−∞, 1)) = {(x, y) ∈ R2, x ∈ (−1, 1)} is an open set.
Next, g(x, y) = y−x2 is a continuous function. Indeed, g(x, y) = q(x, y)−p(x, y)2. Consequently,
f−1((−∞, 0)) = {(x, y) ∈ R2, y − x2 < 0} = {(x, y) ∈ R2, y < x2}.
Since M = f−1((−∞, 1)) ∩ g−1((−∞, 0)), we deduce that M is open.

Definition 3.9. An interior of set M ⊂ R2 is a set M0 of all points (x0, y0) for which there is
r > 0 such that Br(x0, y0) ⊂M . Equivalently, it is the biggest open set contained in M .
A closure of a set M ⊂ R2 is a set M defined as M := R2 \ (R2 \M)0. Equivalently, it is the
smallest closed set containing M .
A boundary of a set M is denoted by ∂M and it is defined as M \M0.

Example Consider M = [0, 1] × (0, 1). Then M0 = (0, 1) × (0, 1) and M = [0, 1] × [0, 1]. We
deduce that

∂M = M \M0 = ([0, 1]× {0, 1}, {0, 1} × [0, 1]) .

Definition 3.10. Let M ⊂ R2. A point (x0, y0) ∈ R2 is a limit point of M if Br(x0, y0)∩M 6= ∅
for every r > 0.
A point (x0, y0) ∈ M is an isolated point of M if there is r > 0 such that Br(x0, y0) ∩M =
{(x0, y0)}.

Example Consider a set M := {(x, y) ∈ R, y = 0, x = 1/n, n ∈ N}. We claim, that (0, 0)
is a limit point of M . Indeed, let r > 0. Then there is nr such that nr > 1/r and, clearly,
(1/nr, 0) ∈M is such point that ‖(1/nr, 0)− (0, 0)‖ < r and thus Br(0, 0) ∩M = (1/nr, 0).

3.6 Some exercises

1. Find a distance between lines AB and CD where A = (1, 0, 1), B = (2, 2, 1), C = (2, 1, 4)
and D = (−1, 0, 1).

2. Prove, that all points of M := {(x, y) ∈ R, y = 0, x = 1/n, n ∈ N} are isolated points.

4 Functions of two variables

4.1 Introduction

Definition 4.1. Let M ⊂ R2 be a nonempty set. A real function of two variables defined on a
set M is a formula f which assigns a (unique) real number y to every pair (x1, x2) ∈ M . We
use the notation

y = f(x1, x2).

To denote the function itself we use a notation f : M 7→ R. The set M is called a domain of f
and we write M = Dom f .

Usually, the function will be given only by its formula without any specific domain. In that
case, we assume that the domain is a maximal set for which has the formula sense. For example,
a function

f(x1, x2) = log(x1 + x2)

is defined on a set
Dom f = {(x1, x2) ∈ R2, x1 + x2 > 0}.
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Problem Find (and sketch) a maximal set M ⊂ R2 of such pairs (x1, x2) for which the function

f(x1, x2) =
1√

x2
1 + x2 − 1

.

Necessarily,
√
x2

1 + x2 − 1 > 0 and we deduce that the function has sense for all pairs satisfying

x2
1 + x2 − 1 > 0.

Definition 4.2. Let z = f(x, y) be a function of two variables. The graph of f is a set

graphf = {(x, y, f(x, y) ∈ R3, (x, y) ∈ Dom f}.

Definition 4.3. A contour line C at height z0 ∈ R is a set

{(x, y) ∈ R2, f(x, y) = z0}.

Example Find contour lines at heights z0 = −2,−1, 0, 1, 2 for a function

f(x, y) =
x2 + y2

2x
.

Algebra of functions of two variables:
Sum, product and division is defined ’pointwisely’. Consider, for example, functions f(x, y) = exy

and g(x, y) =
√

1− x2 − y2. Then

• (f + g)(x, y) = exy +
√

1− x2 − y2,

• (fg)(x, y) = exy
√

1− x2 − y2,

• f
g (x, y) = exy√

1−x2−y2
. Beware, here we have to exclude from the domain all points where g

equals zero.

Composition of functions: Let f : M 7→ R2 (this means that there are two functions f1 :
M 7→ R and f2 : M 7→ R and f = (f1, f2)) and g : R2 7→ R. Then a composition is a function
h = g ◦ f defined as

h(x, y) = g(f1(x, y), f2(x, y)).

Similarly, if f : M 7→ R and g : R 7→ R then h = g ◦ f is defined as h(x, y) = g(f(x, y))
We can also introduce the boundedness of a function f : M ⊂ R2 7→ R. This can be done

similarly to the one dimensional case. The precise definition of a bounded function is left as an
exercise.

4.2 Continuity

Definition We say that f : M 7→ R is continuous at a point (x0, y0) ∈M if

∀ε > 0, ∃δ > 0, ∀(x, y) ∈ (M ∩Bδ(x0, y0)) , |f(x, y)− f(x0, y0)| < ε.

Let N ⊂ M and let f : M 7→ R be continuous at all points (x0, y0) ∈ N . Then we say that f is
continuous on N . If f is continuous on Dom f then we simply say that f is continuous.
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Observation 4.1. Let f1 and f2 be continuous functions. Then

f1 + f2, f1 − f2 and f1f2

are continuous function. Moreover, f1

f2
is a continuous function on a set {(x, y) ∈ R2, f2(x, y) 6=

0}. Further, f1 ◦ f2 is also a continuous function. We remind that f(x, y) = x and f(x, y) = y
are continuous function.

Example A function

f(x, y) =
x+
√
x+ y

1 + cos2 x

is continuous for all (x, y) ∈ R2.

4.3 Limits

Definition 4.4. Let (x0, y0) be a limit point of M ⊂ R2 and let f : M 7→ R. We say that a limit
of f at the point (x0, y0) is A ∈ R if

∀ε > 0, ∃δ > 0, ∀(x, y) ∈ (M ∩Bδ(x0, y0)), |f(x, y)−A| < ε.

We write lim(x,y)→(x0,y0) f(x, y) = A.
We say that a limit of f at the point (x0, y0) is ∞ if

∀M > 0, ∃δ > 0, ∀(x, y) ∈ (M ∩Bδ(x0, y0)), f(x, y) > M.

We write lim(x,y)→(x0,y0) f(x, y) =∞.
We say that a limit of f at the point (x0, y0) is −∞ if lim(x,y)→(x0,y0)−f(x, y) = −∞.

Observation 4.2 (Arithmetic of limits). Let f and g be two functions and let (x0, y0) be a limit
point of Dom f and of Dom g. Then

lim
(x,y)→(x0,y0)

(f + g)(x, y) = lim
(x,y)→(x0,y0)

f(x, y) + lim
(x,y)→(x0,y0)

g(x, y)

lim
(x,y)→(x0,y0)

fg(x, y) = lim
(x,y)→(x0,y0)

f(x, y) lim
(x,y)→(x0,y0)

g(x, y)

lim
(x,y)→(x0,y0)

f

g
(x, y) =

lim(x,y)→(x0,y0) f(x, y)

lim(x,y)→(x0,y0) g(x, y)
.

assuming the right hand side is well defined.

The numbers∞−∞, 0 ·∞, 0
0 , ∞∞ are not well defined (similarly to the one dimensional case).

Observation 4.3. A function f is continuous at point (x0, y0) ∈ Dom f if and only if lim(x,y)→(x0,y0) f(x, y) =
f(x0, y0).

Example Consider a function

f(x, y) =
x2y2

x2y2 + (x− y)2
.

This function is not defined at (0, 0). It is possible to define the value f(0, 0) in such a way that
f is continuous? In particular, does there exists a finite limit

lim
(x,y)→(0,0)

f(x, y)?
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First, we approach (0, 0) along the line y = 0. We have

lim
(x,0)→(0,0)

f(x, 0) = lim
x→0

0

x2
= 0.

Next, we approach (0, 0) along the line x = y. We have

lim
(x,x)→(0,0)

f(x, x) = lim
x→0

x4

x4
= 1.

As a result, lim(x,y)→(0,0) f(x, y) does not exist.

Lemma 4.1 (Sandwich lemma). Let f, g, h be three functions defined on Bδ(x0, y0) \ {(x0, y0)}
for some δ > 0. Assume

∀(x, y) ∈ Bδ(x0, y0) \ {(x0, y0)}, g(x, y) ≤ f(x, y) ≤ h(x, y).

If lim(x,y)→(x0,y0) g(x, y) = lim(x,y)→(x0,y0) h(x, y) = A ∈ R then also

lim
(x,y)→(x0,y0)

f(x, y) = A.

Corollary 4.1. lim(x,y)→(x0,y0) |f(x, y)| = 0⇒ lim(x,y)→(x0,y0) f(x, y) = 0.

Example Compute

lim
(x,y)→(0,0)

xy√
x2 + y2

.

We use notation f(x, y) = xy√
x2+y2

. First of all, we have limx→0 f(x, 0) = 0 and limy→0 f(0, y) =

0. Thus, if there is a limit, it is equal to 0. We use the well known AM-GM inequality (2|xy| ≤
(x2 + y2)) to deduce

0 ≤ |xy|√
x2 + y2

≤ x2 + y2√
x2 + y2

=
√
x2 + y2 → 0

as (x, y) → 0. The sandwich lemma yields lim(x,y)→(0,0) |f(x, y)| = 0 and we have just proven
that the given limit is equal to 0.

4.4 Derivatives

Definition 4.5. We define partial derivatives with respect to x and with respect to y as

∂f

∂x
(x0, y0) = lim

h→0

f(x0 + h, y0)− f(x0, y0)

h
∂f

∂y
(x0, y0) = lim

h→0

f(x0, y0 + h)− f(x0, y0)

h
.

Example Let compute ∂f
∂x and ∂f

∂y for a function

f(x, y) = 3x2y + x2 + log(x2 + y2).

Let first compute ∂f
∂x . In that case we treat y as a constant and we deduce that

∂f

∂x
= 6xy + 2x+

2x

x2 + y2
.

In order to compute ∂f
∂y we treat x as a constant and we get

∂f

∂y
= 3x2 +

2y

x2 + y2
.
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Definition 4.6. We define second order partial derivatives as follows

∂2f

∂x2
=

∂

∂x

(
∂f

∂x

)
,
∂2f

∂y2
=

∂

∂y

(
∂f

∂y

)
∂2f

∂x∂y
=

∂

∂x

(
∂f

∂y

)
,
∂2f

∂y∂x
=

∂

∂y

(
∂f

∂x

)
.

Analogously we define the third and higher order partial derivatives.

Example Let compute the first and second order derivatives for f(x, y) = x
y − e

xy. We have

∂f

∂x
=

1

y
− yexy, ∂f

∂y
= − x

y2
− xexy

∂2f

∂x2
= −y2exy,

∂2f

∂y∂x
= − 1

y2
− exy − xyexy

∂2f

∂y2
= 2

x

y3
− x2exy,

∂2f

∂x∂y
= − 1

y2
− exy − xyexy.

Observation 4.4. Let the second order derivative of a function f be continuous. Then

∂2f

∂x∂y
=

∂2f

∂y∂x
.

Definition 4.7. The derivative of a function f at point (x0, y0) in direction the of a vector
v ∈ R2 is a number

Df((x0, y0), v) = lim
h→0

f((x0, y0) + hv)− f(x0, y0)

h
.

Example The derivative Df((1, 2), (3,−4)) of a function f(x, y) = arctan(xy) is

Df((1, 2), (3,−4)) = lim
h→0

arctan((1 + 3h)(2− 4h))− arctan 2

h

= lim
h→0

1
1+(1+3h)2(2−4h)2 (2− 24h)

1
=

2

5

Remark 4.1. It holds that

∂f

∂x
(x, y) = Df((x, y), (1, 0)),

∂f

∂y
(x, y) = Df((x, y), (0, 1)).

Definition 4.8. Let (x0, y0) ∈ Dom f . A vector

∇f(x0, y0) =

(
∂f

∂x
(x0, y0),

∂f

∂y
(x0, y0)

)
is called the gradient of f at point (x0, y0).

Observation 4.5. It holds that

Df((x0, y0), v) = ∇f(x0, y0) · v = ‖∇f(x0, y0)‖‖v‖ cosα,

where α is an angle between ∇f and v.
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Corollary 4.2. As a consequence, the function increases at most in the direction of the gradient.

Theorem 4.1 (Chain rule – derivative of a composed function). Let n = 1 or 2 and let f :
Rn 7→ R2 and g : R2 7→ R. Then

∂(g ◦ f)

∂xi
=

∂g

∂y1

∂f1

∂xi
+

∂g

∂y2

∂f2

∂xi
, i = {1, n}.

Example Let f(x) = g(sinx, cosx). Then

∂f

∂x
=
∂g

∂a
cosx− ∂g

∂b
sinx

where we use a notation g = g(a, b).

4.5 Differential

Consider a function f : R2 7→ R. We try to compute an increment of a function if we move from
the point (x0, y0) to the point (x0 + h, y0 + k9), i.e., ∆f(x0, y0) = f(x0 + h, y0 + k)− f(x0, y0).
It can be written as

∆f(x0, y0) = f(x0 + h, y0 + k)− f(x0 + h, y0) + f(x0 + h, y0)− f(x0, y0).

Assuming |h| and |k| are sufficiently small we can us an approximation

f(x0 + h, y0 + k)− f(x0 + h, y0) ∼ ∂f

∂x
(x0 + h, y0)k

f(x0 + h, y0)− f(x0, y0) ∼ ∂f

∂y
(x0, y0)h

Moreover, ∂f
∂x (x0 + h, y0) ∼ ∂f

∂x (x0, y0) if f ∈ C1. This yields

f(x0 + h, y0 + k)− f(x0, y0) ∼ ∂f

∂x
(x0, y0)h+

∂f

∂y
(x0, y0)k.

We denote by dx the change in the x coordinate and dy the change in the y coordinate.

Definition 4.9. Let f ∈ C1. Then

df(x0, y0) =
∂f

∂x
(x0, y0)dx+

∂f

∂y
(x0, y0)dy

is called the differential of f at the point (x0, y0).

The differential of a function can be used to determine approximate values. Let for exam-
ple determine

√
(0.03)2 + (2.89)2. Consider a function f(x, y) =

√
x2 + y2. We have ∇f =(

x√
x2+y2

, y√
x2+y2

)
. We choose x0 = 0 and y0 = 3. We have dx = 0.03 and dy = −0.11. It

holds that √
(0.03)2 + (2.89)2 ∼

√
02 + 32 + 0 · 0.03 + 1 · (−0.11) = 2.89

It is worth to mention that df(x0, y0) = ∇f(x0, y0) · (dx, dy).
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Definition 4.10. Let f : R2 7→ R have continuous partial derivatives at point (x0, y0). Then a
tangent plane of the graph of f at point (x0, y0) is a plane with equation

z = f(x0, y0) +∇f(x0, y0) · (x− x0, y − y0).

Example Let compute a tangent plane of the graph of f at point (1, 2) for f(x, y) =
√

9− x2 − y2.
We have

∇f(x, y) =

(
− x√

9− x2 − y2
,− y√

9− x2 − y2

)
and ∇f(1, 2) = (−1/2,−1). Thus, the tangent plane is

z = 2− 1/2(x− 1)− 1(y − 2) = 9/2− x/2− y.

4.6 The Taylor polynomial

An approximation by a differential is deduced above. In particular

f(x, y) ∼ f(x0, y0) +
∂f

∂x
(x− x0) +

∂f

∂y
(y − y0). (4)

Recall that we use it to compute
√

(0.03)2 + (2.89)2.
The above considerations leads to the definition of the first-order Taylor polynomial at a point
(x0, y0) as

T1(x, y) = f(x0, y0) +
∂f

∂x
(x− x0) +

∂f

∂y
(y − y0).

Note that the graph of T1 is also a tangent plane to the graph of the function f at the point
(x0, y0) and it is the only plane which is the best approximation of the function near the point
(x0, y0).

Definition 4.11. We define the second order Taylor polynomial at a point (x0, y0) as

T2(x, y) = f(x0, y0) +
∂f

∂x
(x0, y0)(x− x0) +

∂f

∂y
(x0, y0)(y − y0)+

+
1

2!

(
∂2f

∂x2
(x0, y0)(x− x0)2 + 2

∂2f

∂x∂y
(x− x0)(y − y0)

+
∂2f

∂y2
(x0, y0)(y − y0)2

)
Definition 4.12. We define the third order Taylor polynomial at a point (x0, y0) as

T3(x, y) = f(x0, y0) +
∂f

∂x
(x0, y0)(x− x0) +

∂f

∂y
(x0, y0)(y − y0)+

+
1

2!

(
∂2f

∂x2
(x0, y0)(x− x0)2 + 2

∂2f

∂x∂y
(x− x0)(y − y0)

+
∂2f

∂y2
(x0, y0)(y − y0)2

)
+

1

3!

(
∂3f

∂x3
(x0, y0)(x− x0)3+

3
∂3f

∂x2∂y
(x0, y0)(x− x0)2(y − y0)+

+3
∂3f

∂x∂y2
(x0, y0)(x− x0)(y − y0)2 +

∂3f

∂y3
(x0, y0)(y − y0)3

)
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Example We compute an approximate value
√

(0.03)2 + (2.89)2 with the help of the second

order Taylor polynomial. We choose (x0, y0) = (0, 3) and we use notation f(x, y) =
√
x2 + y2.

We have ∂f
∂x = x√

x2+y2
, ∂f
∂y = y√

x2+y2
, ∂2f
∂x2 = y2

(x2+y2)3/2 , ∂2f
∂y2 = x2

(x2+y2)3/2 , ∂2f
∂x∂y = −xy

(x2+y2)3/2 .

We deduce that T2 at (0, 3) is

T2(x, y) = 3 + (y − 3) +
1

6
x2

We get T2(0.03, 2.89) = 3 + (−0.11) + 1
60.0009 = 2.89015.

Example It holds that

ex sin y ∼ y + xy +
1

2
x2y − 1

6
y3

assuming |x| and |y| are sufficiently small.
We compute the third order Taylor polynomial centered at (x0, y0) = (0, 0). Denote f(x, y) =
ex sin y. We have

∂f

∂x
= ex sin y

∂f

∂y
= ex cos y

∂2f

∂x2
= ex sin y

∂2f

∂y2
= −ex sin y

∂2f

∂x∂y
= ex cos y

∂3f

∂x3
= ex sin y

∂3f

∂y∂x2
= ex cos y

∂3f

∂y3
= −ex cos y

∂3f

∂x∂y2
= −ex sin y.

Thus

∂f

∂x
(0, 0) = 0

∂f

∂y
(0, 0) = 1

∂2f

∂x2
(0, 0) = 0

∂2f

∂y2
(0, 0) = 0

∂2f

∂x∂y
(0, 0) = 1

∂3f

∂x3
(0, 0) = 0

∂3f

∂y∂x2
(0, 0) = 1

∂3f

∂y3
(0, 0) = −1

∂3f

∂x∂y2
(0, 0) = 0.

and the corresponding third-order Taylor polynomial is indeed

y + xy +
1

2
x2y − 1

6
y3.

4.7 Implicit functions

Consider a set
{(x, y) ∈ R2, x2 + y2 = 1}

The equation x2 + y2 = 1 defines two function y1(x) and y2(x) where

y1(x) =
√

1− x2, Dom y1(x) = [−1, 1],

y2(x) = −
√

1− x2, Dom y2(x).
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x

y

What if it is impossible to express y? Consider an equation

f(x, y) = 0.

What assumptions should be imposed in order to get uniquely defined function y(x)?

Theorem 4.2. Let f : R2 7→ R and (x0, y0) ∈ R2 be given. If

i) f ∈ Ck for some k ∈ N,

ii) f(x0, y0) = 0,

iii) ∂f
∂y (x0, y0) 6= 0,

Then there is a uniquely determined function y(x) of class Ck on a neighborhood of point x0 such
that f(x, y(x)) = 0 (precisely, there is ε > 0 and a function y(x) defined on (x0 − ε, x0 + ε) such
that f(x, y(x)) = 0.

Example Consider an equation

x3 + y3 − 3xy − 3 = 0.

Is there a function y(x) determined by the given equation on the neighborhood of a point (1, 2)?
According to the previous theorem, we have to verify three assumptions:
1, the function f(x, y) = x3 + y3 − 3xy − 3 should belong (at least) to C1. That is true since
f(x, y) is a polynomial.
2, f(1, 2) should be equal to zero (or, equivalently, the given equation should be satisfied at the
given point). This is also true.
3, ∂f

∂y = 3y2 − 3x and therefore ∂f
∂y (1, 2) = −3 6= 0 and the last assumption is also true.

As a result, there is a function y(x) uniquely determined by the given equation in some neigh-
borhood of point x = 1, y = 2.

Note that the last assumption in the implicit function theorem cannot be omited. Consider the
first equation

x2 + y2 = 1

and let decide whether there is a function y(x) given by that equation at the point (1, 0). Ac-
cording to the picture, it is impossible (recall the vertical line test). The theorem may not be
applied. Take f(x, y) = x2 + y2 − 1. We have

∂f

∂y
= 2y,

∂f

∂y
(1, 0) = 0
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and the third assumption is not fulfilled.
Or another example, consider a set

{(x, y) ∈ R2, x2 − y2 = 0}.

Is this set a graph of some function around a point (0, 0)? Once again, we have f(x, y) = x2−y2,
∂f
∂y = −2y and the last assumption of the implicit function theorem is not fulfilled.

Further analysis of the implicitly given function
In order to examine further qualitative properties of the given function we have to compute
derivatives at the given points. The easiest method is to differentiate the given equation with
respect to x (and to assume that y is in fact a function of x).
Example: Consider an equation

e2x + ey + x+ 2y − 2 = 0.

This defines on a neighborhood of (0, 0) a function y(x). Indeed, let f(x, y) = e2x+ey+x+2y−2.
Then f is of class Ck for every k ∈ N, f(0, 0) = 0 and ∂f

∂y = ey + 2 which yields ∂f
∂y (0, 0) = 3 6= 0.

Let compute y′′′(0) (note that the third derivative exists as f ∈ C3).
Let differentiate the equation with respect to x. We have

2e2x + eyy′ + 1 + 2y′ = 0

and we plug here x = 0 and y = 0 in order to get

2 + y′(0) + 1 + 2y′(0) = 0

which yields y′(0) = −1.
We differentiate once again with respect to x to get

4e2x + eyy′2 + eyy′′ + 2y′′ = 0

and we plug here x = 0, y = 0 and y′ = −1. We get

4 + 1 + 3y′′(0) = 0

yielding y′′(0) = − 5
3 . We differentiate the equation for the third time in order to get

8e2x + eyy′3 + ey2y′y′′ + eyy′y′′ + eyy′′′ + 2y′′′ = 0

and once again we plug there x = 0, y = 0, y′ = −1 and y′′ = − 5
3 . We get

8− 1 +
10

3
+

5

3
+ 3y′′′ = 0

which gives
y′′′(0) = −4.

In particular, we may write

0 =
∂f(x, y(x))

∂x
=
∂f(x, y)

∂x
+
∂f(x, y)

∂y

∂y

∂x

which gives

y′(x0) = −
∂f
∂x (x0, y0)
∂f
∂y (x0, y0)

.
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4.8 Extremes

Similarly to the one-dimensional case, we talk about local and global extremes.

Definition 4.13. Let f : M ⊂ R2 7→ R. We say that f attains a local maximum at a point
(x0, y0) ∈M0 if there is r > 0 such that f(x0, y0) ≥ f(x, y) for all (x, y) ∈ Br(x0, y0).
We say that f attains a local minimum at a point (x0, y0) ∈ M0 if there is r > 0 such that
f(x0, y0) ≤ f(x, y) for all (x, y) ∈ Br(x0, y0).

Definition 4.14. Let f : M ⊂ R2 7→ R. We say that f attains its maximum on M at a point
(x0, y0) if f(x0, y0) ≥ f(x, y) for all (x, y) ∈ M . Similarly, f attains its minimum on M at a
point (x0, y0) if f(x0, y0) ≤ f(x, y) for all (x, y) ∈M .

Local extremes
Assume f ∈ C1 Let f has a local extrem at (x0, y0). Then g(x) = f(x, y0) has also a local
extreme at x0 and, therefore, g′(x0) = 0. Similarly, h(y) = f(x0, y) has a local extreme at y0

and thus h′(y0) = 0. This leads to the following observation.

Observation 4.6. Let f ∈ C1 have a local extreme at (x0, y0). Then ∇f(x0, y0) = 0.

Definition 4.15. A point (x0, y0) ∈M such that ∇f(x0, y0) = 0 is called a stationary point.

How to find all local extremes of given function?
Step 1: determine the stationary point.
Step 2: examine the possible extremes in the stationary point.
Reminder: in the one-dimensional case one has to treat the sign of the second derivative in order
to decide if there is an extreme in a stationary point.

Example Let find all stationary points of f(x, y) = x2− y2. We have ∇f(x, y) = (2x,−2y) and
therefore the only stationary point is (x0, y0) = (0, 0). Is there a maximum or minimum?

Definition 4.16. Let f ∈ C2. Then the Hess matrix of f is

Hf =

(
∂2f
∂x2

∂2f
∂x∂y

∂2f
∂x∂y

∂2f
∂y2

)
.

The determinant of Hf is called Hessian.

Observation 4.7. Let f ∈ C2 and let (x0, y0) be its stationary point. Then:

1. Let detHf(x0, y0) > 0, then

i if ∂2f
∂x2 (x0, y0) > 0 then f attains a local minimum at (x0, y0),

ii if ∂2f
∂x2 (x0, y0) < 0 then f attains a local maximum at (x0, y0).

2. Let detHf(x0, y0) < 0, then f does not have an extreme at (x0, y0) (saddle point).

3. Otherwise, we do not know anything.

Example: Let go back to f(x, y) = x2−y2. We already know that (x0, y0) = (0, 0) is a stationary
point. We have

Hf =

(
2 0
0 −2

)
.

Thus detHf(0, 0) = −4 and there is no extreme at (0, 0).
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Another example Determine all local extremes of

f(x, y) = x3 + 3xy2 − 15x− 12y.

Step 1, stationary points:

∇f(x, y) = (3x2 + 3y2 − 15, 6xy − 12)

and we stationary points are solutions to

3x2 + 3y2 − 15 = 0

6xy − 12 = 0

which is equivalent to

x2 + y2 − 5 = 0

xy = 2.

We deduce from the second equation that x and y are different from zero. The second equation
yields x = 2

y . We plug this into the first equation to deduce

4

y2
+ y2 − 5 = 0

which is equivalent to
y4 − 5y2 + 4 = 0.

We have y2 = 4, y2 = 1 and therefore there are four stationary points

A = (−1,−2), B = (1, 2), C = (2, 1), D = (−2,−1).

Step 2: We have

Hf =

(
6x 6y
6y 6x

)
Further,

Hf(A) =

(
−6 −12
−12 −6

)
, detHf(A) = −108

and A is a saddle point.

Hf(B) =

(
6 12
12 6

)
, detHf(B) = −108

and B is a saddle point.

Hf(C) =

(
12 6
6 12

)
, detHf(C) = 108

and C is a point of a local minimum. The value of the local minimum is f(C) = −28.

Hf(D) =

(
−12 −6
−6 −12

)
, detHf(D) = 108

and D is a point of a local maximum. The value of the local maximum is f(D) = 28.

Global extremes
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Definition 4.17. A set M ⊂ R2 is bounded if there is r > 0 such that M ⊂ Br(0, 0).

Observation 4.8. Let f : M ⊂ R2 7→ R be continuous. Let M be a bounded and closed set.
Then there is (x0, y0) where f attains its minimum on M and there is (x1, y1) where M attains
its maximum.

One-dimensional case, reminder
Consider this function: One has to consider separately the interior of M and the ’boundary’ of

x

y

M . Although the function whose graph is in the picture has two stationary points, just one of
them is a point of a global extreme. The point of the global minimum is on the edge of M .

Boundary in the two dimensional case might be a bit complicated. In order to find extremes
here, we use the Lagrange multipliers method.

Theorem 4.3. Let f : Dom f ⊂ R2 7→ R be of class C1 and let it be defined on the neighborhood
of a set M which is given as

M = {(x, y) ⊂ R2, g(x, y) = 0}

for some function g ∈ C1. Let ∇g 6= 0. If there is an extreme of f with respect to the set M
then there exists λ ∈ R such that

∇f + λ∇g = 0.

Example We show how to determine a maximum and minimum of f(x, y) = −y2 +x2 + 4
3x

3 on
a set M = {(x, y) ∈ R2, x2 + y2 = 4}.
The first question is whether there is a maximum and minimum. Our first claim is that the set
M is closed. Why? Recall Observation 3.8. We define g(x, y) = x2 + y2 − 4 and then the set M
is g−1({0}) and since {0} ⊂ R2 is a closed set, we deduce that M is also closed. Further, M is
bounded since M ⊂ B3(0, 0). Therefore, according to the very first observation of this talk there
has to be a maximum and minimum of f on M .
Further, it holds that ∇g 6= 0 for every (x, y) 6= (0, 0). Note that (0, 0) /∈ M and thus we may
use the Lagrange multipliers. We have

∇f(x, y) = (2x+ 4x2,−2y), ∇g(x, y) = (2x, 2y).

We end up with a system

2x+ 4x2 + 2λx = 0

−2y + 2λy = 0

x2 + y2 = 4.
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We deduce from the second equation that y(2λ− 2) = 0 and we get that either y = 0 or λ = 1.
Consider first the case y = 0. Then the last equation yields x2 = 4 and therefore x = ±2. We
get two ’stationary’ points

A = (2, 0), B = (−2, 0).

Next, assume λ = 1. The first equation then yields

4x+ 4x2 = 0

which gives x = 0 or x = −1.
Let x = 0. The last equation is then y2 = 4 and we get y = ±2 and another two stationary
points

C = (0, 2), D = (0,−2).

Finally, let x = −1. Then we get y2 = 3 and y = ±3 and we deduce another two stationary
points

E = (−1,
√

3), D = (−1,−
√

3).

We have f(A) = 44
3 , f(B) = − 20

3 , f(C) = −4, f(D) = −4, f(E) = − 10
3 and f(F ) = − 10

3 . We
deduce that the maximum is attained at the point (2, 0) and its value is 44

3 , the minimum is
attained at the point (−2, 0) and its value is − 20

3 .

Example We find extremes of f(x, y) = x2 +y2−12x+16y on a set M = {(x, y) ⊂ R2, x2 +y2 ≤
25, x ≥ 0}.

x

y

M1M2

M3

M4

M4

We dismantle the set into four pieces

M1 = {(x, y) ∈ R2, x2 + y2 < 25, x > 0},
M2 = {(x, y) ∈ R2, x2 + y2 < 25, x = 0},
M3 = {(x, y) ∈ R2, x2 + y2 = 25, x > 0},
M4 = {(x, y) ∈ R2, x2 + y2 = 25, x = 0}.

and we takcle each subset separately:
- Stationary points in M1 = {(x, y) ∈ R2, x2 + y2 < 25, x > 0}:
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We solve ∇f = 0 which is

2x− 12 = 0

2y + 16 = 0

Therefore the stationary point is (6,−8). However, 62 + (−8)2 = 100 > 25 and this point does
not belong to M1.
- Stationary points in M2 = {(x, y) ∈ R2, x2 + y2 < 25, x = 0}:
We are going to consider a function f(x, y) on line x = 0. Therefore it is enough to examine
function f(0, y) =: h(y). We have

h(y) = y2 + 16y

and therefore h′(y) = 2y + 16. The resulting stationary point is x = 0, y = −8. However,
(−8)2 > 25 and the point (0,−8) does not belong to M2.
- Stationary points in M3 = {(x, y) ∈ R2, x2 + y2 = 25, x = 0}:
There is a constraint g(x, y) = x2 + y2 − 25. We have ∇g = (2x, 2y) and we have ∇g 6= 0 for
every (x, y) ∈M3. The system ∇f + λ∇g = 0 complemented with g = 0 has form

2x− 12 + 2xλ = 0

2y + 16 + 2yλ = 0

x2 + y2 = 25.

We may deduce that y 6= 0 (otherwise the second equation cannot be true) and λ 6= 0 (otherwise
x = 6, y = −8 and the last equation is not fulfilled. The first and second equation might be
rewritten as

xλ = 6− x
yλ = −8− y

and we divide the first equation by the second to get

λx

λy
=

6− x
−8− y

.

This yields
x

y
=
x− 6

8 + y

and
8x+ xy = xy − 6y

and therefore

y = −4

3
x.

We plug this into the last equation (x2 + y2 = 25) to get

x2 +
16

9
x2 = 25

which yields x = ±3. Therefore we have two stationary points (−3, 4) and (3,−4), however, the
first one does not belong to M3. So we take into consideration only A = (3,−4).
- Stationary points in M4 = {(x, y) ∈ R2, x2 + y2 = 25, x = 0}: This set consists only of two
points. Indeed, let both equations holds at once. Then necessarily

y2 = 25
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and we have two points B = (0, 5) and C = (0,−5). These two points have to be considered as
there might appear global extremes (although these points are not stationary).
- Final evaluation: We have just three points where the extremes might be attained:
A = (3,−4), B = (0, 5) and C = (0,−5). We have

f(A) = −75

f(B) = 105

f(C) = −55.

We deduce that the minimum of f on set M is attained at the point (3,−4) and its value is −75,
the maximum of f on set M is attained at point (0, 5) and its value is 105.

x

y
B, maximum, f(B) = 105

A, minimum, f(A) = −75

The least square method
We will solve the following exercise: Assume that the cost of a car (of one given type) depends
linearly on its age, i.e.,

y = ax+ b, a, b ∈ R,

where y is the price of a car and x is its age.
Our aim now is to determine this function (constants a and b) from the given sets of data. Below
we have a table of particular cars (their price does not follow strictly the above rule since the
price come from the free market)

x 2 3 3 3 4 4 5 5 6
y 28.7 24.8 26.0 30.5 23.8 24.6 23.8 20.4 22.1

To find the line which fits best to the given data, we use the least squares method. This
means that we are going to minimize the ’distance’ between the line ax+ b and the given data.
We define such distance as sum of squares:

|y1 − ax1 − b|2 + |y2 − ax2 − b|2 + . . .+ |yn − axn − b|2 =

n∑
i=1

|yi − axi − b|2.
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x

y (x1, y1)

(x1, ax1 + b)

|y1 − ax1 − b|

This sum of squares in infact a function f of variables a and b of the form

f(a, b) =

n∑
i=1

(yi − axi − b)2

and we are going to minimize this sum of squares. We compute the partial derivative

∂f

∂a
= −2

n∑
i=1

(yi − axi − b)xi,
∂f

∂b
= −2

n∑
i=1

(yi − axi − b).

and we deduce that the stationary point of this function has to fulfill

n∑
i=1

(yi − axi − b)xi = 0

n∑
i=1

(yi − axi − b) = 0.

Recall that unknowns are a and b. We reformulate this into(
n∑
i=1

x2
i

)
a+

(
n∑
i=1

xi

)
b =

n∑
i=1

xiyi(
n∑
i=1

xi

)
a+ nb =

n∑
i=1

yi.

Recall our example

x 2 3 3 3 4 4 5 5 6
y 28.7 24.8 26.0 30.5 23.8 24.6 23.8 20.4 22.1

where we have

n = 9,

9∑
i=1

xi = 35,

9∑
i=1

x2
i = 149,

9∑
i=1

yi = 224.7,

9∑
i=1

xiyi = 848.5.
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We and up with equation

149a+ 35b = 848.5

35a+ 9b = 224.7

which has (approximate) solution

a = −2.02, b = 32.8.

Thus, the desired line has equation

y = −2.02x+ 32.8

x

y

4.9 Double Integrals

Let start with a motivation - double integral over a rectangle: Assume we have a constant function
f(x, y) ≡ k > 0 on a set M = [a, b]× [c, d]. What is the volume of a prism [a, b]× [c, d]× [0, k]?
Simple answer is (b − a)(c − d)k. In this particular case we write

∫
[a,b]×[c,d]

f(x, y) dxdy =

(b− a)(c− d)k.
Let M be a rectangle [a, b] × [c, d] and let f(x, y) be a positive function defined on M . The

value of the integral ∫
M

f(x, y) dxdy

is a volume of a set

S = {(x, y, z) ∈ R3, (x, y) ∈M, 0 ≤ z ≤ f(x, y)}.

Observation Let f be continuous function on a rectangle M . Then there is an integral∫
M

f(x, y) dxdy.
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[a, b]

[c, d]

k

Remark 4.2 (measurable sets). It is not necessary to define integrals only over rectangles. In
particular, the set M can be ’almost arbitrary’ and then the meaning of integral is the same as
in the previous slide. The only condition is that the integral∫

M

1 dxdy

has value (and it might be even infinity). Such sets are called measurable sets and we will not
define them in the scope of this class. Let me just mention that not every set is measurable. On
the other hand, it is very difficult to construct a non-measurable set. All sets appearing in this
class are measurable. Interested students might look for the Banach-Tarski theorem.

Remark 4.3 (measurable functions). Similarly, it is not necessary to define integrals only for
continuous functions. Once again, there are functions called ’measurable functions’ (and all
continuous functions are measurable as well). And, similarly as before, it is very difficult to
construct a non-measurable functions. In particular, every ’well-behaved’ function is a measurable
function and all functions appearing in this class are measurable.

Definition 4.18. Let M ⊂ R2. We define a vertical cross-section as

Mx = {y ∈ R, (x, y) ∈M}.

Similarly, we define a horizontal cross-section as

My = {x ∈ R, (x, y) ∈M}.

Mx
My
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Theorem 4.4 (Fubini). Let M ⊂ R2 is a measurable set and f : M → R be a measurable
function. Then∫

M

f(x, y) dxdy =

∫
R

(∫
Mx

f(x, y) dy

)
dx =

∫
R

(∫
My

f(x, y) dx

)
dy.

assuming that the integral on the left hand side is well defined.

Example Compute ∫
M

5x2y − 2y3 dxdy, M = [2, 5]× [1, 3].

We use notation f(x, y) = 5x2y − 2y3 and we have My = [2, 5] for y ∈ [1, 3] and My = ∅

M

My

otherwise. Thus∫
M

f(x, y) dxdy =

∫
R

∫
My

f(x, y) dxdy =

∫ 3

1

∫ 5

2

f(x, y) dxdy.

We have∫
M

5x2y − 2y3 dxdy =

∫ 3

1

(∫ 5

2

5x2y − 2y3 dx

)
dy

=

∫ 3

1

[
5x3y

3
− 2xy3

]x=5

x=2

dy =

∫ 3

1

625

3
y − 10y3 − 40

3
y + 4y3 dy

=

∫ 3

1

195y − 6y3 dy =

[
195

2
y2 − 3

2
y4

]3

1

= 660.

Example Let compute integral∫
M

2xey dxdy, M = [0, 2]× [0, 1].

We use the Fubini theorem to deduce∫
M

2xey dxdy =

∫ 2

0

(∫ 1

0

2xey dy

)
dx =

and since 2x is not a function of y, it can be put in front of the inner integral to obtain

=

∫ 2

0

2x

(∫ 1

0

ey dy

)
dx =

∫ 2

0

2x dx

∫ 1

0

ey dy.

Observation 4.9. Let f(x, y) = g(x)h(y) and let M = [a, b]× [c, d]. Then∫
M

f(x, y) dxdy =

∫ b

a

g(x) dx

∫ d

c

h(y) dy.
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Back to the given integral. We have∫
M

2xey dxdy =

∫ 2

0

2x dx

∫ 1

0

ey dy =
[
x2
]2
0

[ey]
1
0 = 4(e− 1)

Example Compute ∫
M

x2 + xy − 1 dxdy

where M is a triangle with vertices A = 〈0, 0〉, B = 〈2, 0〉 and C = 〈0, 6〉. Recall that the line

y

xA B

C

BC has an equation y = 6− 3x. Therefore, the vertical cross-section has form Mx = (0, 6− 3x).
and we deduce∫

M

x2 + xy − 1 dxdy =

∫ 2

0

(∫ 6−3x

0

x2 + xy − 1 dy

)
dx

=

∫ 2

0

[
x2y +

xy2

2
− y
]y=6−3x

y=0

dx

=

∫ 2

0

6x2 − 3x3 + 18x− 18x2 +
9

2
x3 − 6 + 3x dx

=

[
3

8
x4 − 4x3 +

21

2
x2 − 6x

]2

0

= 6− 32 + 42− 12 = 4.

Observation 4.10 (Properties of integral). The following holds:

• Let f and g be (measurable) functions of two variables, M ⊂ R2 measurable set and α ∈ R.
Then ∫

M

αf(x, y) + g(x, y) dxdy = α

∫
M

f(x, y) dxdy +

∫
M

g(x, y) dxdy.

• Let M =
⋃n
i=1Mi. Then∫

M

f(x, y) dxdy =

n∑
i=1

∫
Mi

f(x, y) dxdy.

• Let f be a measurable function, M ⊂ R2 be a measurable set and let f be non-negative on
M (i.e. f(x, y) ≥ 0 for all (x, y) ∈M). Then∫

M

f(x, y) dxdy ≥ 0.
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Example Compute ∫
M

(x+ y)2 dxdy

where M is a square with vertices A = 〈0,−1〉, B = 〈1, 0〉, C = 〈0, 1〉, D = 〈−1, 0〉. Here we

x

y

divide M into two subsets, M1 = M ∩ {x < 0} and M2 = M ∩ {x ≥ 0}. We have

(M1)x = (−x− 1, x+ 1) for x ∈ (−1, 0),

(M2)x = (x− 1,−x+ 1) for x ∈ [0, 1).

Therefore,∫
M

(x+ y)2 dxdy =

∫ 0

−1

(∫ x+1

−x−1

x2 + 2xy + y2 dy

)
dx

+

∫ 1

0

(∫ −x+1

x−1

x2 + 2xy + y2 dy

)
dx.

We compute

∫ 0

−1

(∫ x+1

−x−1

x2 + 2xy + y2 dy

)
dx =

∫ 0

−1

[
x2y + xy2 +

y3

3

]y=x+1

y=−x−1

dx

=

∫ 0

−1

8

3
x3 + 4x2 + 2x+

2

3
dx =

[
2

3
x4 +

4

3
x3 + x2 +

2

3
x

]0

−1

=
1

3
.

Similarly

∫ 1

0

(∫ 1−x

x−1

x2 + 2xy + y2 dy

)
dx =

∫ 1

0

[
x2y + xy2 +

y3

3

]y=1−x

y=x−1

dx

=

∫ 1

0

−8

3
x3 + 4x2 − 2x+

2

3
dx =

[
−2

3
x4 +

4

3
x3 − x2 +

2

3
x

]1

0

=
1

3
.

Eventually, we obtain ∫
M

(x+ y)2 dxdy =
2

3
.
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4.10 Change of variables

Recall one of the previous exercises:∫
M

(x+ y)2 dxdy,M is a square with vertices A = (0,−1),

B = (1, 0), C = (0, 1), D = (−1, 0).

The value of the integral is 2
3 – that was deduced in the previous section, however, the com-

putation was quite cumbersome. This time we present one better method how to compute the
integral.
Recall, that the one-dimensional substitution method works in the following way∫ b

a

f(t) dt =

∫ β

α

f(ϕ(x))ϕ′(x) dx.

This time, we consider a mapping Φ : R2 → R2, Φ(u, v) = (ϕ(u, v), ψ(u, v)) and we assume that

u

v

H

Φ

x

y

Φ(H) =: M

x = ϕ(u, v), y = ψ(u, v).

Definition 4.19. A mapping Φ : H ⊂ R2 7→ R2 satisfying

• Φ ∈ C1,

• Φ is an injection,

• The Jacobian matrix of Φ is regular,

is called a regular mapping.

Definition 4.20. Let Φ : H ⊂ R2 7→ R2 have components ϕ(u, v) and ψ(u, v). Then the
Jacobian matrix of Φ is a matrix

JΦ(u, v) =

(
∂ϕ
∂u (u, v) ∂ϕ

∂v (u, v)
∂ψ
∂u (u, v) ∂ψ

∂v (u, v)

)
.

Its determinant is then called the Jacobian determinant.

Theorem 4.5. Let f(x, y) is a measurable function on D ⊂ R2 and let Φ = (ϕ,ψ) : H ⊂ R2 7→
M is a regular mapping. Then∫

M

f(x, y) dxdy =

∫
H

f(ϕ(u, v), ψ(u, v))|det JΦ(u, v)| dudv.
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To show the role of the Jacobian determinant we consider a mapping

x = au+ bv =: ϕ(u, v)

y = cu+ dv =: ψ(u, v).

Here we have that

JΦ(u, v) =

[
a b
c d

]
.

Let H = (0, 1) × (0, 1). Then M is a parallelogram with sides represented by vectors (a, c) and
(b, d).

u

v

H

x

y

M
(a, c)

(b, d)

The area of H is
∫
H

1 dudv = 1 and the area of M is
∫
M

1 dxdy =

∣∣∣∣det

[
a b
c d

]∣∣∣∣. Indeed, the

area of the parallelogram is equal to S = sinα‖(a, c)‖‖(b, d)‖ and we may compute

S2 = sin2 α‖(a, c)‖2‖(b, d)‖2 =
(
1− cos2 α

)
‖(a, c)‖2‖(b, d)‖2

= ‖(a, c)‖2‖(b, d)‖2 − ((a, c) · (b, d))
2

= (a2 + c2)(b2 + d2)− (ab+ cd)2 = a2d2 + c2b2 − 2abcd

= (ad− bc)2.

Therefore, there has to be a factor |det JΦ| in order to get∫
M

1 dxdy =

∫
H

1|det JΦ| dudv.

Example: Let compute (once again) the integral∫
M

(x+ y)2 dxdy

where M = {(x, y) ∈ R2, −1 ≤ x+ y ≤ 1, −1 ≤ x− y ≤ 1}. We establish new variables

u = x+ y

v = x− y

and we deduce that

x =
1

2
(u+ v)

y =
1

2
(u− v).
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Thus, in this case, Φ(u, v) =
(

1
2 (u+ v), 1

2 (u− v)
)

and it holds that

JΦ(u, v) =

(
1
2

1
2

1
2 − 1

2

)
, |det JΦ(u, v)| = 1

2
.

Let also mention that Φ(M) = {(u, v) ∈ R2, u ∈ [−1, 1], v ∈ [−1, 1]}. Therefore we deduce that∫
M

(x+ y)2 dxdy =

∫
[−1,1]2

u2 1

2
dudv =

1

2

∫ 1

−1

u2 du

∫ 1

−1

1 dv =

∫ 1

−1

u2 du =

[
u3

3

]1

−1

=
2

3
.

4.11 Polar coordinates

x

y

(x, y)

α

r

We have

x = r cosα

y = r sinα.

(and also r =
√
x2 + y2). Therefore we establish Φ(r, α) = (r cosα, r sinα) and we infer

JΦ(r, α) =

[
cosα −r sinα
sinα r cosα

]
and

det JΦ(r, α) = r cos2 α+ r sin2 α = r.

Thus, ∫
M

f(x, y) dxdy =

∫
Φ−1(M)

f(r cosα, r sinα)r drdα.

Example: Volume of a ball with radius R can be computed as twice the integral∫
M

√
R2 − (x2 + y2) dxdy

where M = {(x, y) ∈ R2, x2 + y2 ≤ R2}. We have∫
M

√
R2 − (x2 + y2) dxdy =

∫ 2π

0

∫ R

0

√
R2 − r2r drdα

= 2π

∫ R

0

√
R2 − r2r dr
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and we use a (one-dimensional) substitution t = R2− r2. In that case dt = −2r dr and we have

2π

∫ R

0

√
R2 − r2r dr = −π

∫ 0

R2

√
t dt = π

∫ R2

0

√
t dt = π

[
t3/2

3
2

]R2

0

= π
2

3
R3.

Note that this is just one half of the demanded volume. Therefore, we have just deduced the
well known relation

V =
4

3
πR3.

Example Let compute an area of the set M which is given by the following conditions:

(x2 + y2)2 ≤ 2xy, x ≥ 0, y ≥ 0.

We use the polar coordinates. The second and third condition yields α ∈ [0, π/2]. Next, we plug
the polar coordinates into the first condition to deduce

r4 ≤ 2r2 cosα sinα

and since r > 0, we may divide the inequality by r to get

r2 ≤ 2 cosα sinα

and thus (recall that sin(2α) = 2 sinα cosα)

r ≤
√

sin(2α).

We deduce that

∫
M

1 dxdy =

∫ π/2

0

∫ √sin(2α)

0

r drdα =

∫ π/2

0

[
r2

2

]r=√sin(2α)

r=0

dα =
1

2

∫ π/2

0

sin(2α) dα

= −1

4
[cos(2α)]

π/2
0 =

1

2

Example:Adjusted polar coordinates
Let compute an area of an ellipse which is given as

M =

{
(x, y) ∈ R2,

x2

a2
+
y2

b2
≤ 1

}
for some positive reals a and b.
We define

x = ar cosα =: ϕ(r, α)

y = br sinα =: ψ(r, α)

It holds that Φ−1(M) = (0, 1)× (0, 2π). Furthermore, we have

JΦ(r, α) =

(
a cosα −ar sinα
b sinα br cosα

)
and therefore detJΦ(r, α) = abr. We get∫

M

1 dxdy =

∫
(0,1)×(0,2π)

abr drdα =

∫ 1

0

abrdr

∫ 2π

0

1 dα = πab.
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4.12 The Laplace integral

We use polar coordinates in order to deduce the value of integral∫ ∞
0

e−ax
2

dx, a > 0.

Note that this integral cannot be evaluated by ’standard’ one-dimensional methods.
We denote I :=

∫∞
0
e−ax

2

dx and M = (0,∞)× (0,∞). We have∫
M

e−ax
2−ay2

dxdy =

∫ ∞
0

e−ax
2

dx

∫ ∞
0

e−ay
2

dy = I2.

We use polar coordinates, i.e.

x = r cosα

y = r sinα

Note that Φ((0,∞)× (0, π/2)) = M . Therefore∫
M

e−a(x2+y2) dxdy =

∫ π/2

0

∫ ∞
0

e−ar
2

r drdα =
π

2

∫ ∞
0

e−ar
2

r dr

and we use a (one-dimensional) substitution r2 = t to get

π

2

∫ ∞
0

e−ar
2

r dr =
π

4

∫ ∞
0

e−at dt = −π
4

1

a

[
e−at

]∞
0

=
π

4a
.

We have just deduced that

I =
1

2

√
π

a
.

4.13 Some exercises

• Write precisely the definition of a bounded function.

• Sketch contour lines for a function f(x, y) = x2 − y2 at heights z0 = −3,−2,−1, 0, 1, 2, 3.

• Consider a function f(x, y) =

 0, for (x, y) = 0
1, for y = x2, x 6= 0,
0 otherwise

• Let f(x) = g(sinx, cosx). Express f ′′(x) in terms of the first and second derivatives of g.

• Write the second order Taylor polynomial for a function f(x, y) = arctan(x + 2y) at the
point (1, 0).

• Try to write a formula for T4(x, y).

• Show that the equation

log(x+ y) = x+ y − xy − x2 − y2

determine on a neighborhood of (0, 1) a function y(x). Write an equation of the tangent
line to the graph of that function at the given point (recall that log stands for the natural
logarithm).
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• Show that the equation
ex − ey − x− y = 0

determine on a neigborhood of (0, 0) a function y(x). Is this function increasing, decreasing,
convex or concave at the given point? Try to approximate that function by the second order
Taylor polynomial.

• Determine all local extremes of

f(x, y) = xy +
50

x
+

20

y
.

• Find maximum and minimum of a function

f(x, y) = x2 + 12xy + 2y2

on a set M = {(x, y) ∈ R2, 4x2 + y2 = 25}.

• The bottom of a rectangular box costs twice as much per unit area as the sides and top.
Find the shape for a given volume that will minimize cost.

• Suppose you are running a factory, producing some sort of widget that requires steel as a
raw material. Your costs are predominantly human labor, which is $20 per hour for your
worker, and the steel itself, which runs for $170 per ton. Suppose your revenue R is loosely
modeled by the following equation

R(h, s) = 200h2/3s1/3

where h represents hours of labor and s represents tons of steel.
If your budget is $20 000, what is the maximum possible revenue?

• Write cross-sections Mx and My for a triangle whose vertices are 〈−1,−1〉, 〈−1, 3〉 and
〈3,−1〉.

• Try to compute the integral∫
M

5x2y − 2y3 dxdy, M = [2, 5]× [1, 3].

by a different approach, in particular, try to write
∫
R

(∫
Mx

f(x, y) dy
)

dx and then com-

pute it.

• There is one easy way how to prove that the parallelogram with sides represented by vectors

(a, c) and (b, d) has an area equal to

∣∣∣∣det

(
a b
c d

)∣∣∣∣ – it can be proven by use of a triple

product. Try to find it.

• Compute an area of the set M given as

M = {(x, y) ∈ R2, a2 ≤ x2 + y2 ≤ b2}

where a and b are given positive constants.
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5 Systems of ODEs

5.1 Introduction

Problem: Two large tanks, each holding 24 liters of a brine solution, are interconnected by
pipes. Fresh water flows into tank A at a rate of 6 L/min, and fluid is drained out of tank B
at the same rate; also 8 L/min of fluid are pumped from tank A to tank B, and 2 L/min from
tank B to tank A. The liquids inside each tank are kept well stirred so that each mixture is
homogeneous. If, initially, the brine solution in tank A contains x0 kg of salt and that in tank
B initially contains y0 kg of salt, determine the mass of salt in each tank at time t > 0.

Let denote:
amount of salt in the first tank: x
amount of salt in the second tank: y
salt flowing out of the first tank per one minute: x

248
salt flowing out of the second tank per one minute: y

242 + y
246

salt flowing into the first tank per one minute: y
242

salt flowing into the second tank per one minute: x
248

We arrive at the system

x′ = −1

3
x+

1

12
y

y′ =
1

3
x− 1

3
y

which can be rewritten as (
x′

y′

)
=

(
− 1

3
1
12

1
3 − 1

3

)(
x
y

)
.

This is in particular a system of first-order linear equations.

In what follows, we will tackle a system of ODEs of the form

x′(t) = Ax(t) + b(t)

where x(t) = (x1(t), . . . , xn(t))T and b(t) = (b1(t), . . . , bn(t))T are n−dimensional vectors and A
is an n by n square matrix.
We emphasize that higher order linear differential equations with constant coefficients might be
rewritten into a system of first order linear equations. Indeed, consider

y′′ + ky′ +my = 0.

We denote x = y′ and then it holds that x′ = −kx−my and the above system might be rewritten
as

x′ = −kx−my
y′ = x

Theorem 5.1. Assume A is a constant n by n matrix and let x1, . . . ,xn be n linearly independent
solutions to the homogeneous system

x′(t) = Ax(t) (5)
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on the interval I. Then every solution to (5) on I can be expressed in the form

x(t) = c1x1(t) + . . .+ cnxn(t),

where c1, . . . , cn are real constants.

Definition 5.1. A set of solutions {x1, . . . ,xn} that are linearly independent is called a funda-
mental solution set for (5).

Theorem 5.2. If xp is a particular solution to the nonhomogeneous system

x′(t) = Ax(t) + b(t) (6)

on the interval I and {x1, . . . ,xn} is a fundamental solution set on I for the corresponding
homogeneous system x′(t) = Ax(t), then every solution to (6) on I can be expressed in the form

x(t) = xp(t) + c1x1(t) + . . .+ cnxn(t),

where c1, . . . , cn are real constants.

Proof is left as an exercise for interested readers.

The above theorem yields an approach to solving linear systems of the form x′ = Ax + b:

1. Find a fundamental solution set for the corresponding homogeneous system x′ = Ax.

2. Find one particular solution to the non-homogeneous system.

5.2 Homogeneous systems with constant coefficients

We are going to solve
x′ = Ax (7)

Let assume (and that is something usual in the case of linear system with constant coefficients)
that the solution is of the form

x(t) = eλtv

where λ ∈ R and v is an n−dimensional vector constant in t. We have

x′(t) = λeλtv

and once we plug this into (7), we deduce

λeλtv = Aeλtv.

We may divide by eλt to deduce
λv −Av = 0.

As a result, λ is an eigenvalue and v is a corresponding eigenvector.

Example
Let try to solve the initial value problem given at the beginning of this lesson, i.e.,

x′ =

(
− 1

3
1
12

1
3 − 1

3

)
x, x(0) =

(
x0

y0

)
.
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To compute the eigenvalues of A =

(
− 1

3
1
12

1
3 − 1

3

)
we have to compute a determinant

det(A− λI) = det

(
− 1

3 − λ
1
12

1
3 − 1

3 − λ

)
= λ2 +

2

3
λ+

1

12
.

Therefore, the eigenvalues are solutions to

λ2 +
2

3
λ+

1

12
= 0.

We get λ1 = − 1
2 and λ2 = − 1

6 .

Let take λ1. Then the corresponding eigenvector whould satisfy

(
1
6

1
12

1
3

1
6

)
v1 = 0 and this can

be solved by GEM as follows (
1
6

1
12

1
3

1
6

)
∼
(

1
6

1
12

)
.

The solution (one of many) is v1 =

(
−1
2

)
.

Similarly, for λ2 we have (
− 1

6
1
12

1
3 − 1

6

)
∼
(
− 1

6
1
12

)
and the second eigenvector is v2 =

(
1
2

)
.

The set of all solution (the general solution) is

x(t) = c1e
−1/2t

(
−1
2

)
+ c2e

−1/6t

(
1
2

)
.

In order to reach the initial condition we deduce that

x(0) = c1

(
−1
2

)
+ c2

(
1
2

)
and the constants c1 and c2 has to be determined from the equation

−c1 + c2 = x0

2c1 + 2c2 = y0.

What if the eigenvalues are not real? And what if the eigenvalues are not distinct? (the charac-
teristic polynomial has a double (triple, etc.) root?

5.2.1 Complex eigenvalues

Example Find a general solution of

x′ =

(
−1 2
−1 −3

)
x.
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To find the eigenvalues we have to solve

0 = det

(
−1− λ 2
−1 −3− λ

)
= (1 + λ)(3 + λ) + 2 = λ2 + 4λ+ 5.

Therefore,

λ2 + 4λ+ 4 = −1

(λ+ 2)2 = −1

λ+ 2 = ±i.

We get λ1 = −2 + i, λ2 = −2− i. (Similarly, we may deduce that λ1,2 = −4±
√
−4

2 ). Consider λ1.
We have (

1− i 2
−1 −1− i

)
∼
(
1− i 2

)
and the corresponding eigenvector is v1 = (2, i − 1). Here we note that λ2 = λ1 and v2 = v1

where (α+ βi) = α− βi.
We obtain that one solution is of the form

x(t) = e(−2+i)t(2, i− 1) = e(−2+i)t ((2,−1) + i(0, 1)) .

Recall that
ea+bi = ea(cos b+ i sin b).

Therefore, we can write

x(t) = e−2t (cos t+ i sin t) ((2,−1) + i(0, 1))

= e−2t (cos t(2,−1)− sin t(0, 1)) + ie−2t (sin t(2,−1) + cos t(0, 1)) .

The real part represents one solution, the imaginary part the second one. Thus, the general
solution has a form

x(t) = c1e
−2t (cos t(2,−1)− sin t(0, 1)) + c2e

−2t (sin t(2,−1) + cos t(0, 1))

where c1 and c2 are arbitrary real constants. The same considerations lead to the following
theorem.

Theorem 5.3. If the real matrix A has complex eigenvalues α ± βi with corresponding eigen-
vectors a + ib, then the two linearly independent real vector solutions to x′ = Ax are

eαt cosβta− eαt sinβtb

eαt sinβta + eαt cosβtb.

5.2.2 Double roots

Here we distinquish two cases: either there are two linearly independent eigenvectors correspond-
ing to one eigenvalue, or there is just one.
Example Solve

x′ = Ax
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where A =

(
1 0
0 1

)
. The characteristic equation is

0 = det(A− λI) =

(
1− λ 0

0 1− λ

)
= (1− λ)2.

There is just one eigenvalue λ = 1 and the corresponding eigenvectors solves(
0 0
0 0

)(
v1

v2

)
= 0.

We deduce that there are two corresponding eigenvectors v1 = (1, 0) and v2 = (0, 1) (actually,
all linear combinations of these two are eigenvectors as well). Thus the generalized solution is of
the form

x(t) = c1e
t(1, 0) + c2e

t(0, 1)

for some c1, c2 ∈ R.

Example
Consider now

x′ =

1 0 0
1 3 0
0 1 1

x.

The characteristic equation is

0 = det

1− λ 0 0
1 3− λ 0
0 1 1− λ

 = (1− λ)2(3− λ)

and the eigenvalues are λ1 = 3 and λ2 = 1. Take λ1 = 3. Then−2 0 0
1 0 0
0 1 −2

 ∼ (1 0 0
0 1 −2

)

and the corresponding eigenvector is (0, 2, 1). Thus, the fundamental solution set contains a
function

x(t) = e3t(0, 2, 1).

Take λ2 = 1. Then 0 0 0
1 2 0
0 1 0

 ∼ (1 2 0
0 1 0

)
and the corresponding eigenvector is v1 = (0, 0, 1). Thus, the fundamental solution set contains
a function

x(t) = et(0, 0, 1).

But we need one additional function in the fundamental solution set. How to get it?

Definition 5.2. A generalized eigenvector w corresponding to an eigenvalue λ is a vector sat-
isfying

(A− λI)w = v

where v is an eigenvector corresponding to λ.
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Matrix exponential
The exponential function ex : R 7→ R can be defined as an infinite sum

ex = 1 + x+
x2

2
+
x3

6
+ . . . =

∞∑
n=0

xn

n!
.

Similarly, let A be a square matrix. Then we write

eAt = I +At+
A2t2

2
+
A3t3

6
+ . . .

It holds that(
eAt
)′

= 0 +A+A2t+
A3t2

2
+ . . . = A

(
I +At+

A2t2

2
+ . . .

)
= AeAt

and therefore the columns of the matrix eAt form the fundamental solution set of

x(t) = Ax.

This also means that every solution is of the form x(t) = eAtv where v is an arbitrary n−dimensional
vector. Let v be an eigenvector. Then

eAtv = eλte(A−λt)v

= eλt
(
Iv + t(A− λI)v +

t2

2
(A− λI)v + . . .

)
= eλtv

Let w is a generalized eigenvector. Then

(A− λI)2w = (A− λI)(A− λI)w = (A− λI)v = 0

and we deduce that

eAtw = eλte(A−λt)w

= eλt
(
Iw + t(A− λI)w +

t2

2
(A− λI)w + . . .

)
= eλt(w + tv).

Back to our example: we have

x′ =

1 0 0
1 3 0
0 1 1

x.

We have already deduced that λ1 = 3 has corresponding eigenvector (0, 2, 1) and the double
root λ2 = 1 has a corresponding eigenvector v = (0, 0, 1). Now, we have to find a corresponding
generalized eigenvector w which satisfies0 0 0

1 2 0
0 1 0

w = v

and we use the Gauss elimination method to deduce0 0 0 | 0
1 2 0 | 0
0 1 0 | 1

 ∼ (1 2 0 | 0
0 1 0 | 1

)
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Solutions are of the form (−2, 1, 0) + r(0, 0, 1) for any r ∈ R. It is enough to choose one solution,
say (−2, 1, 0). According to our considerations, we deduce that one solution is of the form

x(t) = et((−2, 1, 0) + t(0, 0, 1)).

Thus, the generalized solution for the given problem is

x(t) = c1e
3t(0, 2, 1) + c2e

t(0, 0, 1) + c3e
t((−2, 1, 0) + t(0, 0, 1))

for some c1, c2, c3 ∈ R.

To summarize:

Observation 5.1. Let the real matrix A has an eigenvalue λ ∈ R which is a double root of
the characteristic equation. Let there be just one corresponding eigenvector v and let w be a
generalized eigenvector. Then the fundamental solution set contains the functions

eλtv, eλt (w + tv) .

5.3 Non-zero right hand side

This time we tackle the problem
x′(t) = Ax(t) + f(t)

where f(t) is a nonzero vector-valued function. We already know how to find all solution to the
corresponding homogeneous system

x′(t) = Ax(t).

5.3.1 Undetermined coefficients

Example Let solve

x′(t) =

 1 −2 2
−2 1 2
2 2 1

x(t) + t

 −9
0
−18

 .

First, let find all solutions to the corresponding homogeneous system. The characteristic equation
is

0 = det

1− λ −2 2
−2 1− λ 2
2 2 1− λ

 = (λ− 3)2(λ+ 3).

For λ1 = 3 we have −2 −2 2
−2 −2 2
2 2 −2

 ∼ (1 1 −1
)

and the corresponding eigenvectors are v1 = (1, 0, 1) and v2 = (0, 1, 1). For λ2 = −3 we have 4 −2 2
−2 4 2
2 2 4

 ∼
 2 −1 1
−2 4 2
2 2 4

 ∼ (2 −1 1
0 3 3

)

and the corresponding eigenvector is v3 = (1, 1,−1). All solutions to the homogeneous problem
have form

x(t) = e3t(c1(1, 0, 1) + c2(0, 1, 1)) + e−3tc3(1, 1,−1)
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where c1, c2, c3 ∈ R.

Let find one particular solution to

x′(t) =

 1 −2 2
−2 1 2
2 2 1

x(t) + t

 −9
0
−18


We can assume that the solution is of the form x(t) = at+ b where a and b are vectors constant
in time. Thus we have x′(t) = a and we plug this into the given equation in order to deduce

a =

 1 −2 2
−2 1 2
2 2 1

 (at+ b) + t

 −9
0
−18


We compare coefficients in order to deduce

0 =

 1 −2 2
−2 1 2
2 2 1

a +

 −9
0
−18


and

a =

 1 −2 2
−2 1 2
2 2 1

b.

To find a we use the GEM as follows 1 −2 2 | 9
−2 1 2 | 0
2 2 1 | 18

 ∼
1 −2 2 | 9

0 −3 6 | 18
0 6 −3 | 0

 ∼
1 −2 2 | 9

0 −3 6 | 18
0 0 9 | 36


and we deduce that a = (5, 2, 4).
Next, we have 5

2
4

 =

 1 −2 2
−2 1 2
2 2 1

b

and we once again use the GEM to get 1 −2 2 | 5
−2 1 2 | 2
2 2 1 | 4

 ∼
1 −2 2 | 5

0 −3 6 | 12
0 6 −3 | −6

 ∼
1 −2 2 | 5

0 −3 6 | 12
0 0 9 | 18



and we have b =

1
0
2

. Thus, all solutions to the given equation are of the form

x(t) =

5
2
4

 t+

1
0
2

+ e3t

c1
1

0
1

+ c2

0
1
1

+ c3e
−3t

 1
1
−1

 .

Observation 5.2. Let f(t) = erttmg where g is a constant vector. Then one solution is of the
form

xp(t) = ert
(
tm+sam+s + tm+s−1am+s−1 + . . .+ ta1 + a0

)
where ai are constant vectors and s is an appropriately chosen integer.
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5.3.2 Variation of parameters

Let solve
x′ = Ax + f(t).

Let X(t) be a matrix whose columns are the elements of the fundamental system set. Then we
know that all solutions to the appropriate homogeneous system are of the form

x(t) = X(t)w

where w is a constant vector. We are looking for a particular solution xp of the form

xp(t) = X(t)w(t).

Then
x′p(t) = X ′(t)w(t) +X(t)w′(t)

and since X ′(t) = AX(t) we get
X(t)w′(t) = f(t).

Thus we have just deduced that

w(t) =

∫
X−1(t)f(t) dt.

Example
Let solve

x′(t) =

(
2 −3
1 −2

)
x(t) +

(
e2t

1

)
, x(0) =

(
−1
0

)
.

To solve the appropriate homogeneous system we have to find solutions to

0 = det

(
2− λ −3

1 −2− λ

)
= λ2 − 1

thus λ1 = 1 and λ2 = −1.
Take λ1 = 1. We have (

1 −3
1 −3

)
∼
(
1 −3

)
and v1 =

(
3
1

)
.

Take λ2 = −1. We have (
3 −3
1 −1

)
∼
(
1 −1

)
and v2 =

(
1
1

)
.

The matrix whose columns are solutions is

X(t) =

(
3et e−t

et e−t

)
.

We infer that

X−1(t) =

(
1
2e
−t − 1

2e
−t

− 1
2e
t 3

2e
t

)
.
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Thus the desired vector w should satisfy

w(t) =

∫ (
1
2e
−t − 1

2e
−t

− 1
2e
t 3

2e
t

)(
e2t

1

)
dt =

∫ (
1
2 (et − e−t)
− 1

2e
3t + 3

2e
t

)
dt

and we deduce that

w(t) =

(
1
2 (et + e−t)
− 1

6e
3t + 3

2e
t

)
Thus, all solutions are of the form

x(t) =

(
3et e−t

et e−t

)(
1
2 (et + e−t)
− 1

6e
3t + 3

2e
t

)
+

(
3et e−t

et e−t

)(
c1
c2

)
where c1, c2 ∈ R are arbitrary.

Next, we have to employ the initial condition x(0) =

(
−1
0

)
. This yields

(
−1
0

)
=

(
3 1
1 1

)(
1
7
6

)
+

(
3 1
1 1

)(
c1
c2

)
.

We deduce that (
3 1
1 1

)(
c1
c2

)
=

(
−1
0

)
−
(

25
6
13
6

)
=

( −31
6
− 15

6

)
.

We deduce that c1 = − 4
3 and c2 = − 7

6 . Finally,

x(t) =

(
3et e−t

et e−t

)(
1
2 (et + e−t)
− 1

6e
3t + 3

2e
t

)
+

(
3et e−t

et e−t

)(
− 4

3
− 7

6

)
is the demanded solution.

5.4 Systems in a plane

During this subsection we consider systems of the form

∂x

∂t
= f(x, y)

∂y

∂t
= g(x, y)

Note that this time, the system is not necessarily linear, however, it is autonomous – the right
hand side in t−independent.

Definition 5.3. If x(t) and y(t) is a solution pair to the above mentioned system for t in the
interval I, then a plot in the xy-plane of the parametrized curve (x(t), y(t)) for t in I, together
with arrows indicating its direction with increasing t, is said to be a trajectory of the system. In
such a context we call the xy-plane the phase plane.

Example no. 1:

x′ = −x
y′ = −2y
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x

y

Recall that
∂y

∂x
=

∂y
∂t
∂x
∂t

=
−2y

−x
.

This yields y = cx2 and thus we get the picture as above. Note that, since y′(t) and x′(t) are
negative for x, y > 0, we get trajectories aiming to the origin. See picture above.
Example no. 2:

x′ = x

y′ = 2y

This time, the picture is the same as above with only one exception – the arrows aim away of
origin (see the picture below), try to justify why.

Definition 5.4. : A point (x0, y0) ∈ R2 where f(x0, y0) = g(x0, y0) = 0 is called a critical point
(or equilibrium point) of the given system. The corresponding solution x ≡ x0, y ≡ y0 is called
an equilibrium solution (or stationary solution).

Observation 5.3. Let x(t) and y(t) be a solution on [0,∞) to the given system (we assume f
and g are continuous). If the limits

lim
t→∞

x(t) = x0, lim
t→∞

y(t) = y0

exist and are finite, then (x0, y0) is a critical point of the system.

Types of equilibrium points:

• Stable node (asymptotically stable)
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x

y

• Unstable node

• Stable spiral (asymptotically stable)

• Unstable spiral

• Saddle (unstable)

• Center (stable, but not asymptiotically)

HERE SHOULD BE A PICTURE, TBD.
Example: Find the critical points and sketch trajectories in the phase plane for

x′ = −y(y − 2)

y′ = (x− 2)(y − 2).

What is the behavior of the solutions starting from (3, 0), (5, 0) and (2, 3)?

Let consider a special case of a linear system in a plane, i.e.,

x′ = a11x+ a12y + b1

y′ = a21x+ a22y + b2

which might be shortened to
x′ = Ax + b

where x =

(
x
y

)
, b =

(
b1
b2

)
and

A =

(
a11 a12

a21 a22

)
.
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In what follows, we assume that b = 0. This assumption will be commented later.
From what we know, we deduce that

• Let the eigenvalues λ1 and λ2 be real, distinct and both positive. Then (0, 0) is an unstable
node.

• Let the eigenvalues λ1 and λ2 be real, distinct and both negative. Then (0, 0) is a stable
node.

• Let the eigenvalues λ1 and λ2 be real and have oposite signs. Then (0, 0) is a saddle point.

• Let the eigenvalues λ1 and λ2 be equal. Then (0, 0) is either a proper node (stable or
unstable) or an improper node (stable or unstable).

• Let the eigenvalues be comples, i.e. λ12 = a± bi where a, b ∈ R. Take the special case

x′ = ax− by
y′ = bx+ ay.

Take z = x+ iy. Then we have

z′ = x′ + iy′ = (ax− by) + i(bx+ ay) = a(x+ iy) + ib(x+ iy) = (a+ bi)z.

We use the polar coordinates z(t) = r(t)eiθ(t) we arrive at

z′(t) = r′(t)eiθt + ir(t)eiθ(t)θ′(t) = (a+ bi)r(t)eiθ(t)

and we infer
r′(t) + ir(t)θ′(t) = ar(t) + bir(t).

Therefore (recall that r and θ are real functions),

r′(t) = ar(t), θ′(t) = b.

What if a = 0? (pure imaginary roots). TBD.

Example Find and classify the critical point of the linear system

x′ = 2x+ y − 3

y′ = −3x− 2y − 4

SOLUTION SHOULD BE ADDED.

5.4.1 Almost linear systems

An almost linear system is a system of the form

x′ = a11x+ a12y + f(x, y)

y′ = a21x+ a22y + g(x, y)

Here we assume that f and g are just small perturbations. In particular,

lim√
x2+y2→0

f(x, y)√
x2 + y2

= 0, lim√
x2+y2→0

g(x, y)√
x2 + y2

= 0.
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The system

x′ = Ax, A =

(
a11 a12

a21 a22

)
is called a corresponding linear system.

Note, that the origin is an equilibrium point of the almost linear system.

Theorem 5.4. The stability properties of the critical point at the origin for the almost linear
system are the same as the stability properties of the origin for the corresponding linear system
with one exception: When the eigenvalues are pure imaginary, the stability properties for the
almost linear system cannot be deduced from the corresponding linear system.

Competing species:
The population of two species x and y (independent on each other) might be governed by the
logistic equations

x′ = k1x(C1 − x) = k1C1x− k1x
2 = a1x− b1x2

y′ = k2x(C2 − y) = a2y − b2y2

Now assume that both species compete for the same food. In such a case, the capacity C might
be exhausted by both x and y and therefore we assume

x′ = a1x− b1x2 − c1xy
y′ = a2y − b2y2 − c2xy

Consider two competing species whose population is governed by

x′ = x(7− x− 2y) = 7x− x2 − 2xy

y′ = y(5− y − x) = 5y − y2 − xy.

SOLUTION SHOULD BE ADDED
Now, consider two species x and y where x is a prey and y is a predator. Then, we get

x′ = ax− bxy
y′ = −cy + dxy.

(8)

where a, b, c, d are positive constants. SOLUTION SHOULD BE ADDED

5.5 Some exercises

• Find a solution to

x′(t) =

(
−3 −1
2 −1

)
x(t)

that satisfies an initial condition x(0) = (−1, 0).

• Find a general solution to
x′′ + 4x′ + 4 = 0

using the theory of systems of linear differential equations of the first order.

• Find a solution to

x′ =

(
1 1
4 1

)
x

fulfilling x(0) = (1, 1).
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• Find a general solution to

x′(t) =

(
6 1
4 3

)
x(t) +

(
−11
−5

)
.

• Find a general solution to

x′(t) =

 0 −1 0
−1 0 0
0 0 1

x(t) +

 e2t

sin t
t

 .

• Solve the related phase plane differential equation for

x′ =
3

y

y′ =
2

x
.

Then sketch several representative trajectories.

• Find and classify the critical point of

x′ = −x+ y + 4

y′ = −y + 1.

• Find all the critical points of

x′ = x+ y

y′ = 5y − xy + 6

and discuss their type and stability properties.

6 Contour integrals

6.1 Contour lines

Definition 6.1. A smooth curve (or a contour line) in R2 is a set of points K ⊂ R2 whose
coordinates are given as

x = x(t), y = y(t)

where

1. x(t) and y(t) are continuous on some interval I ⊂ R (usual choice is I = [a, b]),

2. x(t) and y(t) are of class C1,

3. (x′(t), y′(t)) 6= 0 for every t ∈ [a, b].

Remark 6.1. - A smooth curve in R3 is defined analogously.
- If the second and third conditions are fulfilled with exception of finitely many points, the curve
is called piecewisely smooth.
- A function r : I 7→ R2, r(t) = (x(t), y(t)) is called a parametrization of the curve.
- A curve is called simple if it does not cross itself. I.e., r(t) is one-to-one.
- A curve is called closed if r : [a, b]→ R2 fulfills r(a) = r(b).
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Several examples:
- The curve r : [0, 2π]→ R2, r(t) = (R cos t, R sin t) is a simple closed curve. (a circle with radius
R)
- The curve r : R→ R3, r(t) = (R cos t, R sin t, bt) is a simple curve but it is not closed. (a helix)

Definition 6.2. Let r(t) : [a, b]→ R2 (resp. r(t) : [a, b]→ R3) be a parametrization of a smooth
curve K and let P0 ∈ K and t0 be such that P0 = r(t0). Then the vector r′(t) is a tangent vector
of the curve K at the point P0.

Example Consider a helix r : R 7→ R3, r(t) = (2 cos t, 2 sin t, 3t). Determine a tangent vector at
P0 = (−2, 0, 3π).
First, we have to determine t0 ∈ R such that r(t0) = P0. We infer t0 = π. Further, we have

r′(t) = (−2 sin t, 2 cos t, 3)

and therefore
r′(π) = (0,−2, 3)

which is the desired tangent vector in (−2, 0, 3π).

Definition 6.3. Let K be a curve given by a parametrization r : I1 → K. Next, let ϕ : I2 → I1
be an arbitrary C1 function. Then r ◦ϕ : I2 → K is also a parametrization of K assuming ϕ′ 6= 0
everywhere on I2. The function ϕ is called an admissible change of parametrization.

Definition 6.4. Let r : [a, b] → Rd, d = 2, 3 be a smooth parametrization of some curve. Then
we say that r(a) is the initial point and r(b) is the terminal point of the curve.

Observation 6.1. Let ϕ ∈ C1 and let ϕ′ 6= 0 everywhere on an interval I ⊂ R. Then either
ϕ′(t) > 0 for every t ∈ I or ϕ′(t) < 0 for every t in I.
Let ϕ be a change of parametrization with ϕ′ > 0. Then the initial point and the terminal point
of the curve do not change.
Let ϕ be a change of parametrization with ϕ′ < 0. Then the initial point and the terminal point
of the curve interchange.

Example
Consider a curve given by parametrization r : [0, 1]→ R3

r(t) = (1− 2t, 2 + 3t, 3− 2t).

Consider a change t = ϕ(s) = s − 2. Then ϕ : [2, 3] → [0, 1] is one-to-one, ϕ′ = 1 6= 0 and we
have a new parametrization

r1(t) = (1− 2(s− 2), 2 + 3(s− 2), 3− 2(s− 2)) = (5− 2s,−4 + 3s, 7− 2s), s ∈ [2, 3].

Note that the initial point is (1, 2, 3) and the terminal point is (−1, 5, 1) for both parametrizations.

Observation 6.2. Let K be a curve given by a parametrization r1(t). And let r2(s) be given as
r1(ϕ(s)) where ϕ is an admissible change of parametrization. Then we have

r′1(t) = r′2(ϕ(s))ϕ′(s).

Corollary 6.1. The change of parametrization does not change the direction of the tangent
vector. It might change only its size or orientation.
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Definition 6.5. Let K is given by a parametrization r : I → Rd and let f be a real function
defined on Rd. Then the restriction of f to K f�K : I → R is a function f ◦ r.

Example Let f(x, y, z) = x2 + y2 + z2 and let K be given by a parametrization r(t) =
(t, t2, t3), t ∈ [0, 1]. Then

f�K = f(t, t2, t3) = t2 + t4 + t6, Dom f�K = [0, 1].

Recall the Riemann integral: for a function f : [a, b]→ R we define

(R)

∫ b

a

f(x) dx = lim
n→∞

Sn(f)

where

Sn(f) =
b− a
n

n∑
i=1

f(ci)

where ci ∈ [xi−1, xi] and xi = a+ i
n (b− a).

The length of a curve:
Let the curve K has a parametrization r : [a, b] 7→ Rd, d = 2, 3. In order to compute the length
of a curve, we approximate the length by

n∑
i=1

‖r(xi)− r(xi−1)‖

where xi are defined as above. By a mean value theorem there exists ξi ∈ (xi−1, xi) such that

r(xi)− r(xi−1) = r′(ξi)(xi − xi−1) = r′(ξi)
b− a
n

.

(This is not completely true) We plug this into the sum in order to get the approximate length

b− a
n

n∑
i=1

‖r′(ξi)‖

and, due to the definition of the Riemann integral, we obtain that the length of the smooth curve
l is given as

l =

∫ b

a

‖r′(t)‖ dt.

Definition 6.6. A curve whose length is finite is called a finite curve.

Definition 6.7. For a finite curve K with parametrization r : [a, b]→ Rd we define an integral
of f on K as follows ∫

K
f(x, y, z) ds =

∫ b

a

f(r(t))‖r′(t)‖ dt

Example Let compute an integral ∫
K
xyz ds
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where K is given as

x = t, y =
1

3

√
8t3, z =

1

2
t2, t ∈ [0, 1].

Here we have r(t) = (t, 1
3

√
8t3/2, 1

2 t
2). Therefore, r′(t) = (1, 1

2

√
8t, t) and ‖r′(t)‖ =

√
1 + 2t+ t2 =

(1 + t). We infer∫
K
xyz ds =

∫ 1

0

√
2

3
t9/2(1 + t) dt =

√
2

3

[
2

11
t11/2 +

2

13
t13/2

]1

0

=

√
2

3

26 + 22

143
=

16
√

2

143
.

Example Determine the mass of a part of a helixK which is parametrized by r(t) = (3 cos t, 3 sin t, 4t), t ∈
[0, 2π] and whose (linear) density is equal to f(x, y, z) = z2.
Here we have f(r(t)) = (4t)2 = 16t2 and r′(t) = (−3 sin t, 3 cos t, 4). Therefore ‖r′(t)‖ = 5 and
we compute ∫

K
f(x, y, z) ds =

∫ 2π

0

16t25 dt = 80

[
t3

3

]2π

0

=
640

3
π3.

6.2 Vector fields

Definition 6.8. Let d = 2, 3. A vector field on a set G ⊂ Rd is a function

F : G→ Rd

(this means a function which assign a vector F (X) to every X ∈ G.)

Example Consider a vector field

F (x, y) =

(
− y√

x2 + y2
,

x√
x2 + y2

)
.

This field is defined on a set G = R2 \ {0}.
Example Consider a vector field

F (x, y, z) =

(
x√

x2 + y2 + z2
,

y√
x2 + y2 + z2

,
z√

x2 + y2 + z2

)

This field is defined on a set G = R3 \ {0}.

Similarly to the scalar case (i.e. scalar function defined on Rd, d = 2, 3) we define restriction
of a vector field F to a curve K given by a parametrization r : [a, b]→ Rd as a composition, i.e.

F �K : [a, b]→ Rd, F �K = F ◦ r.

Example Consider

F (x, y, z) =

(
x

2 + y
,

y

3 + x
,

xy

1 + z2

)
and a curve K given by

r(t) = (cos t, sin t, t), t ∈ R.

Then we have

F �K(r(t)) =

(
cos t

2 + sin t
,

sin t

3 + cos t
,

cos t sin t

1 + t2

)
.
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6.3 Differential

Definition 6.9. Let r : [a, b] → R3 have coordinates x(t), y(t), z(t). The differential of r at a
point t0 is a vector-valued function defined as

dr = (x′(t0)dt, y′(t0)dt, z′(t0)dt)

and we write
dr = (dx, dy,dz).

Remark 6.2. We may also write
dr = r′(t)dt.

Equivalently, we may define differentials in R2.

Definition 6.10. Let K be a curve with parametrization r : [a, b]→ Rd, d = 2, 3. We define an
integral of a vector field F on K as∫

K
F dr =

∫ b

a

F (t) · r′(t) dt.

Example Compute
∫
K F dr where K is given by a parametrization

r(t) = (2− t2, 1 + 2t, 2 + 3t3), t ∈ [−1, 1]

and F is given as
F (x, y, z) = (xz, yz, xy).

We have r′(t) = (−2t, 2, 9t2) and therefore∫
K

(xz, yz, xy) dr =

∫ 1

−1

((2− t2)(2 + 3t3), (1 + 2t)(2 + 3t3), (2− t2)(1 + 2t)) · (−2t, 2, 9t2) dt

=

∫ 1

−1

4 + 18t2 + 46t3 − 9t4 − 18t5 + 6t6 dt =
634

35
.

Definition 6.11. Let K1 and K2 be two curves (whose corresponding parametrizations are r1 :
[a, b]→ Rd and r2 : [c, d]→ Rd) such that the terminal point of the first curve is the initial point of
the second one. Then we define a (piecewisely smooth) curve K1+̇K2 as a set of points belonging
to either K1 or K2 and whose parametrizaion (one of many) is a function r : [a, d− c+ b]→ Rd
defined as

r(t) =

{
r1(t) for t ∈ [a, b]
r2(t+ c− b) for t ∈ [b, d− c+ b].

Next, we define a curve −̇K1 as a set of points of the curve K1 with parametrization ṙ defined as

ṙ(t) = r(a+ b− t), t ∈ [a, b].

Remark 6.3. (Note that the terminal point of −̇K1 is the initial point of K1 and vice versa.)

Observation 6.3. Let α ∈ R and let F and G be vector fields. Then:

1.
∫
K(αF +G) dr = α

∫
K F dr +

∫
KG dr,

2.
∫
K1+̇K2

F dr =
∫
K1
F dr +

∫
K2
F dr,

3.
∫
−̇K F dr = −

∫
K F dr.
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6.4 Differential forms

Definition 6.12. Let F (x, y, z) = (F1(x, y, z), F2(x, y, z), F3(x, y, z)) be a vector field and let
dr = (dx,dy,dz). Then we may write that

F · dr = F1(x, y, z)dx+ F2(x, y, z)dy + F3(x, y, z)dz.

The right hand side of this formula is called a differential form. Therefore, there is a one-to-one
relation between differential forms and vector fields.

Remark 6.4. We may also write that∫
K
F · dr =

∫
K
F1(x, y, z)dx+ F2(x, y, z)dy + F3(x, y, z)dz.

Example Compute ∫
K
x dx+ xy dy + (z − x) dz

where K is given by
r(t) = (cos t, sin t, t), t ∈ [0, π].

We have dx = − sin t dt, dy = cos t dt and dz = 1 dt and therefore we may write∫
K
x dx+ xy dy + (z − x) dz =

∫ π

0

cos t(− sin t) dt+ cos t sin t cos t dt+ (t− cos t) dt

=
2

3
+
π2

2
.

6.5 Potential

Let
w = log

√
x2 + y2 + z2.

then
dw =

x

x2 + y2 + z2
dx+

y

x2 + y2 + z2
dy +

z

x2 + y2 + z2
dz.

We say, that w is a potential of a differential form

F (x, y, z) =
x

x2 + y2 + z2
dx+

y

x2 + y2 + z2
dy +

z

x2 + y2 + z2
dz.

Definition 6.13. Let U(x, y, z) : G ⊂ R3 7→ R and let F = ∇U . Then we say that F has a
potential U .

Observation 6.4. Let F has a potential U and let K be a curve parametrized by r : [a, b] 7→ R3.
Then ∫

K
F dr = U(r(b))− U(r(a)).

Or, equivalently, the integral of F on K is equal to the difference of the value of the potential U
in the terminal point of the curve and in the initial point of the curve.
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Proof. Assume that r(t) = (x(t), y(t), z(t)). It holds that∫
K
F dr =

∫ b

a

∂

∂x
U(r(t))x′(t) +

∂

∂y
U(r(t))y′(t) +

∂

∂z
U(r(t))z′(t) dt

=

∫ b

a

∂

∂t
U(r(t)) dt = U(r(b))− U(r(a)).

Example Verify, that U(x, y) = − arctan x
y is a potential of

F (x, y) =

(
− y

x2 + y2
,

x

x2 + y2

)
.

on an upper half-plane {(x, y) ∈ R2, y > 0}. Then compute
∫
K F dr where K is a curve with an

initial point A = (1, 1) and terminal point B = (2
√

3, 2).
First, we have to differentiate U with respect to x and y. We have

∂U

∂x
= − 1

1 + x2

y2

1

y
= − y

x2 + y2
= F1(x, y)

and
∂U

∂y
= − 1

1 + x2

y2

(
− x

y2

)
=

x

x2 + y2
= F2(x, y).

We infer that F has potential U . Next,∫
K
F dr = U(2

√
3, 2)− U(1, 1) = − arctan

√
3 + arctan 1 = −π

3
+
π

4
= − π

12
.

Observation 6.5. • Let F have a potential. Then the value
∫
K F dr is independent of the

curve – only the initial and the terminal points matter.

• Let K be a closed curve and let F have a potential. Then
∫
K F dr = 0.

Definition 6.14. An open set G ⊂ R2 is called simply connected if for every closed curve K ⊂ G
it holds that its interior belongs to G.

Not every field F has a potential. The following hold:

Theorem 6.1. Let F (x, y) = (F1(x, y), F2(x, y)) belong to C1 on a simply connected domain G.
Then F has potential if and only if

∂F1

∂y
=
∂F2

∂x
.

3d analogy: First, we gave a vague definition of a simply connected set. Roughly speaking,
simply connected set is an open set which do not contain holes and which consists only of one
connected component.

Theorem 6.2. A vector field F (x, y, z) = (F1(x, y, z), F2(x, y, z), F3(x, y, z)) ∈ C1 defined on a
simply connected set G has potential if and only if

∂F1

∂y
=
∂F2

∂x
,
∂F1

∂z
=
∂F3

∂x
,
∂F2

∂z
=
∂F3

∂y
.
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Example Prove that
F (x, y) = (x2 − y2, 5− 2xy)

defined on the whole plane has a potential. Then find its potential.
First, we deduce that

∂F1

∂y
= −2y =

∂F2

∂x
.

Next, since F1 = ∂U
∂x , we deduce that

U(x, y) =

∫
F1(x, y) dx =

∫
x2 − y2 dx =

x3

3
− xy2 + c(y).

Similarly, since F2 = ∂U
∂y , we deduce that

U(x, y) =

∫
F2(x, y) dy =

∫
5− 2xy dy = 5y − xy2 + c(x).

We deduce by comparing these two relations that

U(x, y) =
x3

3
− xy2 + 5y + c, c ∈ R.

6.6 Some exercises

• Try to sketch a curve
r(t) = (4− 2t, 3 + 6t− 4t2)

and find a tangent vector at the point P0 = (2, 5).

• Try to find a curve K with parametrization r : [a, b]→ R3 such that r(b)− r(a) = (0, 0, 1)
and, simultaneously, there is no point where r′(t) is parallel to (0, 0, 1). (Such curve con-
tradicts the mean value property mentioned in the text.)

• Let r1 : [a, b] → Rd and r2 : [c, d] → Rd be two different parametrization of K with the
same orientation (i.e., the initial and terminal points are similar). Prove that∫ b

a

F (r1(t)) · r′1(t) dt =

∫ d

c

F (r2(u)) · r′2(u) du.

• Consider a vector field

F (x, y) =

(
− y

x2 + y2
,

x

x2 + y2

)
which is continuous on R2 \ {(0, 0)}. Compute∫

K
F dr

where K is a unit circle with center at the origin.

• Consider a vector field

F (x, y) =

(
− y

x2 + y2
,

x

x2 + y2

)
which is continuous on R2 \ {(0, 0)}. Compute∫

K
F dr

where K is a unit circle with center at the origin.
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