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1 Linear Algebra

1.1 Vector spaces

Definition 1.1. A set V endowed with operations + (sum) and . (multiplication by a real num-
ber) which satisfy u + v ∈ V for all u, v ∈ V and α.u ∈ V for all u ∈ V and α ∈ R is called
vector space (or a linear space) if the following properties are true:

i) u+ v = v + u for all u, v ∈ V ,

ii) u+ (v + w) = (u+ v) + w for all u,w ∈ V ,

iii) ∃0 ∈ V for which it holds that 0 + v = v for all v,

iv) for all v there is an element −v such that v + (−v) = 0,

v) α.(β.v) = (α.β).v for all α, β ∈ R and for all v ∈ V ,

vi) 1.v = v for all v ∈ V ,

vii) (α+ β).v = α.v + β.v for all α, β ∈ R and for all v ∈ V ,

viii) α.(v + w) = α.v + α.w for all α ∈ R and for all v, w ∈ V .

An element of the vector space is called vector.

Remark 1.1 (on notation). It is customary to denote vectors either by bold letters (i.e., v ∈ V )
or by letters with an arrow (i.e., ~v ∈ V ). Hereinafter we use non-bold and non-arrowed letters
to denote vectors (i.e., v ∈ V ). This does not cause any misunderstandings. In case we work
with a group of vectors vi ∈ Rn, i ∈ {1, . . . , d} and we need to highlight the k−th component, we
use (vi)k.

Examples:

• The space of ordered pairs of real numbers (u, v) ∈ R2 with summation and product defined
as

(u1, v1) + (u2, v2) = (u1 + u2, v1 + v2), α(u1, v1) = (αu1, αv1)

for all (u1, v1), (u2, v2) ∈ R2 and α ∈ R is a vector space.

• In general, all ordered n−tuples of real numbers (u1, u2, . . . , un) ∈ Rn for n ∈ N form a
vector space.

• The set S of all (x, y) ∈ R2 satisfying

x+ 2y = 0 (1)

is a vector space. Since this is a subset of the vector space mentioned above, it is enough
to verify that ((x1, y1), (x2, y2) ∈ S) ⇒ (x1 + x2, y1 + y2) ∈ S and (α ∈ R&(x, y) ∈ S) ⇒
(αx, αy) ∈ S. So let (x1, y1) and (x2, y2) satisfy (1). Then (x1 + x2, y1 + y2) also satisfies
(1) since

x1 + x2 + 2(y1 + y2) = x1 + 2y1 + x2 + 2y2 = 0.

Next, let α ∈ R be arbitrary number and let (x, y) satisfies (1). Then

αx+ 2αy = α(x+ 2y) = 0

and (αx, αy) ∈ S.
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• On the other hand, the set S of all pairs (x, y) ∈ R2 satisfying

x+ 2y = 1

is not a vector space. For example, a zero vector (0, 0) does not belong to S and the third
property from the definition of vector space is not fulfilled.

• The set of polynomials is a vector space.

• The set of polynomials of degree 2 is not a vector space. In particular, a zero polynomial
does not belong to this set as the zero polynomial has not degree 2.

• On the other hand, the set of polynomials of degree 0, 1 or 2 is a vector space.

Definition 1.2. Let V be a vector space and let S ⊂ V be such that

i) ∀s1, s2 ∈ S, s1 + s2 ∈ S and

ii) ∀α ∈ R and ∀s ∈ S we have αs ∈ S.

Then S itself is a vector space and we say that S is a subspace of V . If S is nonempty and
S 6= V then we will say that S is a proper subspace.

Examples:

• A subset S = {(x, y, 0) ∈ R3} of V = R3 is a proper subspace.

• All (x, y) solving x + 2y = 0 form a subspace of V = R2 see also one of the previous
examples.

Definition 1.3. Let V be a vector space, n ∈ N and {ui}ni=1 ⊂ V . Their linear combination is
any vector w of the form

w =

n∑
i=1

αiui

where αi are real numbers.

Examples:

• Consider a vector space R3. The vector (2, 5, 3) is a linear combination of (1, 1, 0) and
(0, 1, 1) because

(2, 5, 3) = 2(1, 1, 0) + 3(0, 1, 1).

• On the other hand, (0,−2, 1) is not a linear combination of (1, 1, 0) and (0, 1, 1). Indeed,
if it was, then there would be two numbers α and β such that

(0,−2, 1) = α(1, 1, 0) + β(0, 1, 1).

This equation can be rewritten as a system

0 = α

−2 = α+ β

1 = β

and we deduce that it is impossible to find α and β such that these equations are fulfilled.
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Definition 1.4. The set of all linear combinations of v1, v2, . . . , vn is called a linear span of a
set {v1, v2, . . . , vn}. Precisely,

span{v1, v2, . . . , vn} =

{
n∑
i=1

αivi, αi ∈ R

}
.

Lemma 1.1. Linear span is a vector space.

Examples:

• The set {(x, y, z) ∈ R3, 2x+ y+ z = 0} contains a span of v1 = (1,−2, 0) and v2 = (0, 1, 1)
(or, for example, w1 = (1, 0, 2) and w2 = (1, 1, 3)).

• Exercise: try to prove that {(x, y, z) ∈ R3, 2x+ y + z = 0} = span{(1,−2, 0), (0, 1, 1)}.

Definition 1.5. Vectors v1, v2, . . . , vn ∈ V are said to be linearly dependent if the equation

α1v1 + α2v2 + . . .+ αnvn = 0

has a nontrivial solution (i.e. a solution α1, α2, . . . , αn where at least one coefficient is zero).

Vectors v1, v2, . . . , vn ∈ V are linearly independent if the equation

α1v1 + α2v2 + . . .+ αnvn = 0

has only solution α1 = α2 = . . . = αn = 0.

Examples:

• Vectors (1, 0), (0, 1) and (−2, 3) are linearly dependent since

2.(1, 0) + (−3).(0, 1) + 1.(−2, 3) = (0, 0).

• Vectors (1, 1, 0), (2, 2, 0) and (−1, 0, 1) are linearly dependent since

16.(1, 1, 0) + (−8).(2, 2, 0) + 0.(−1, 0, 1) = (0, 0, 0).

• Vectors (2, 3, 1, 0), (1, 0,−1, 0) and (0, 1, 0,−1) are linearly independent. Indeed, the equa-
tion

α(2, 3, 1, 0) + β(1, 0,−1, 0) + γ(0, 1, 0,−1) = (0, 0, 0, 0)

necessarily yields α = β = γ = 0.

Definition 1.6. Let V = span{v1, v2, . . . , vn}. Then we say that {v1, v2, . . . , vn} generates V
and the vectors {v1, v2, . . . , vn} are generators of V .

Observation 1.1. Let v1, v2, . . . , vn be linearly dependent. Then one of the vectors is a lin-
ear combination of the remaining vectors. Precisely, there is i ∈ {1, . . . , n} such that vi ∈
span{{v1, v2, . . . , vn} \ {vi}}.

Proof. According to assumptions, there is i ∈ {1, . . . , n} such that

α1v1 + α2v2 + . . .+ αnvn = 0

has a solution with αi 6= 0. Assume, without lost of generality, that i = 1. We may rearrange
the equation as

v1 = −α2

α1
v2 −

α3

α1
v3 − . . .−

αn
α1
vn.

5



Corollary 1.1. Let v1 ∈ span{v2, . . . , vn}. Then

span{v2, . . . , vn} = span{v1, v2, . . . , vn}.

Proof. Clearly, span{v2, . . . , vn} ⊂ span{v1, v2, . . . , vn}. Next, let

v =

n∑
i=1

αivi.

Since v1 =
∑n
i=2 βivi for some βi ∈ R, we get

v =

n∑
i=2

(αi + α1βi)vi

and v ∈ span{v2, . . . , vn}.

Definition 1.7. Let {v1, . . . , vn} be a set of linearly independent vectors that generates V . Then
{v1, . . . , vn} is a basis of V .

Theorem 1.1. Every two basis of a vector space V has the same number of elements.

Definition 1.8. We say that V is of dimension n ∈ N iff every basis has n elements.

Examples:

• The set {(1, 0), (0, 1)} ⊂ R2 is a basis. Indeed, every vector (a, b) ∈ R2 can be written as
a(1, 0)+b(0, 1). Moreover, the vectors are linearly independent since α1(1, 0)+α2(0, 1) = 0
has only the trivial solution. Thus, the dimension of R2 is 2.

• Vectors {1, x, x2} form a basis of a vector space containing polynomials of degree at most
two. The dimension of this vector space is thus 3.

Definition 1.9. Let {vi, i = 1, . . . , n} be independent vectors and let v ∈ span{vi, i = 1, . . . , n}.
Then the numbers αi, i = 1, . . . , n satisfying

v =

n∑
i=1

αivi

are determined uniquely and they are called coordinates of v with respect to the given basis.

Examples

• The coordinates of (0, 1) with respect to (3, 2) and (4, 3) are (−4, 3). Indeed, −4(3, 2) +
3(4, 3) = (0, 1).

• The coordinates of P (x) = x2 + 3x+ 4 with respect to Q(x) = x2 + 2 and R(x) = 3
2x+ 1

are (1, 2).
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1.2 Matrices

Definition 1.10. A matrix is a table of numbers arranged in rows and columns. Namely, let
m,n be natural numbers. Then

A =


a11 a12 . . . a1n
a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn

 = (aij)
m,n
i=1,j=1

The matrix A has m−rows and n−columns. The matrix A is said to be of type (m,n).

Example A matrix (
2 3 0
−1 2 −1

)
has two rows and three columns and it is of type (2, 3) (or it is of type two by three).

Operations with matrices Let A = (aij)
m,n
i=1,j=1 and B = (bij)

m,n
i=1,j=1 be two matrices of

the same type. Then we define

A+B = (aij + bij)
m,n
i=1,j=1.

Let α ∈ R. Then αA = (αaij)
m,n
i=1,j=1.

For a matrix A = (aij)
m,n
i=1,j=1 we define a transpose matrix AT as

AT = (aji)
n,m
j=1,i=1

Let A be of type (m,n) and B be of type (n, p). Then C := AB of type (m, p) is defined as

C = (cij)
m,p
i=1,j=1

where

cij =

n∑
k=1

aikbkj .

Example

• (
1 −1 2 0
0 0 1 −2

)
+

(
2 2 2 −5
1 1 −3 4

)
=

(
3 1 4 −5
1 1 −2 2

)
.

•

3

 1 1
2

2 2
−3 1

 =

 3 3
2

6 6
−9 3


• (

1 0
0 1

)T
=

(
1 0
0 1

)
or (

1 1 3
2 −1 1

)T
=

1 2
1 −1
3 1
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or

(
3 −1 −1 0

)T
=


3
−1
−1
0


• (

−1 1 0
2 0 1

) 2 −1
−1 −1
0 1

 =

(
−3 0
4 −1

)
.

Remark 1.2. Matrices of a given type (m,n) forms a vector space of dimension nm.

Remark 1.3. Warning:
AB 6= BA.

Definition 1.11. A matric A is called symmetric if A = AT .

Definition 1.12. A rank of matrix A is a dimension of vector space generated by its rows. It
is denoted by rankA.

Observation 1.2. It holds that rankA = rankAT .

Definition 1.13. An elementary transformation of a matrix is

• scaling the entire row with a nonzero real number or

• interchanging two rows within a matrix or

• adding α−multiple of one row to another for an arbitrary α ∈ R.

Let A arise from B by one or more elementary transformations. Then we write A ∼ B.

Example (
2 1
−1 2

)
∼
(
−1 2
2 1

)
∼
(
−2 4
2 1

)
∼
(
−2 4
6 −7

)
.

Definition 1.14. A leading coefficient of a row is the first non-zero coefficient in that row. We
say that a matrix A is in an echelon form if the leading coefficient (also called a pivot) of a
nonzero row is always strictly to the right of the leading coefficient of the row above it.

Example Consider the following matrices:

A =


−1 −1 3 0
0 0 2 1
0 0 0 −1
0 0 0 0

 B =


−1 −1 3 0
0 2 2 1
1 0 −1 −1
0 0 0 3


The matrix A is in echelon form whereas the matrix B is not in echelon form.

Observation 1.3. Let A be in echelon form. Then its rank is equal to the number of non-zero
rows.
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Proof. Let v1, . . . , vn denote the non-zero rows. It suffices to show that these vectors are linearly
independent. Let solve the equation

α1v1 + α2v2 + . . .+ αnvn = 0. (2)

Let p1 ∈ N be the position of the leading coefficient of v1. Then the above equation yields

α1(v1)p1 = 0

and α1 = 0. Therefore, the equation is simplified to

α2v2 + α3v3 + . . .+ αnvn = 0.

Similarly as above, let p2 ∈ N be the position of the leading coefficient of v2. Then we deduce

α2(v2)p2 = 0

and α2 = 0. The same can be deduced for every αi, i ∈ N and, consequently, there is only a
trivial solution to (2)

The Gauss elimination method
The Gauss elimination method is a sequence of elementary transformations which transform a
given matrix A into an echelon form. As an example, we take a matrix

A =

2 2 −2
4 1 0
5 2 −1

 .

In the first step, we use elementary transformations in order to get rid of 4 in the second row
and 5 in the last row. So we add (−1) times the first row to the second and −5/2 times the first
row to the last one. We get

A ∼

2 2 −2
0 −3 4
0 −3 4

 .

Next, we want to eliminate the second element in the last row. In order to do so, we add (−1)
times the second row to the last one to get2 2 −2

0 −3 4
0 −3 4

 ∼
2 2 −2

0 −3 4
0 0 0

 ∼ (2 2 −2
0 −3 4

)
.

Here we use the fact that the zero row can be omitted without any serious consequence.

Notice that A has a rank two and that means that the vectors (2, 2,−2), (4, 1, 0) and (5, 2,−1)
are linearly dependent.

1.3 Systems of linear equations

Systems of equations
We are going to deal with system of m linear equations with n unknowns x1, x2, . . . , xn.

a11x1 + a12x2 + . . .+ a1nxn = b1

a21x1 + a22x2 + . . .+ a2nxn = b2

... =
...

am1x1 + am2x2 + . . .+ amnxn = bm
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We use notation x = (x1, x2, . . . , xn), b = (b1, b2, . . . , bn) and A = (aij)
mn
i=1,j=1. Then the above

system may be rewritten as
AxT = bT .

The system of equations will be represented by an augmented matrix – i.e. a matrix (A|bT )
where A = (ai,j)

mn
i=1,j=1 and bT is the column on the right hand side. For example, a system of

equations

2x+ 5y = 10

3x+ 4y = 24

is represented by an augmented matrix(
2 5 | 10
3 4 | 24

)
.

Such matrix consists of two parts – matrix A =

(
2 5
3 4

)
and a vector of right hand side b =

(10, 24). Let solve the system by Gauss elimination:(
2 5 | 10
3 4 | 24

)
∼
(

6 15 | 30
3 4 | 24

)
∼
(

6 15 | 30
6 8 | 48

)
∼
(

6 15 | 30
0 −7 | 18

)
The last row of the last matrix represent an equation

−7y = 18 ⇒ y = −18

7
.

The first row of the last matrix represent

6x+ 15y = 30

and once we plug there y = − 18
7 we deduce

x =
80

7
.

Theorem 1.2 (Frobenius). A system of linear equations has solution if and only if rankA =
rank(A|bT ).

Example: Solve

−x+ y + z = 0

2y + x+ z = 1

2z + 3y = 2.

We have −1 1 1 | 0
1 2 1 | 1
0 3 2 | 2

 ∼
−1 1 1 | 0

0 3 2 | 1
0 3 2 | 2

 ∼
−1 1 1 | 0

0 3 2 | 1
0 0 0 | 1


and, according to the Frobenius theorem, there is no solution to the given system. Let us
emphasize that the last row represents an equation

0x+ 0y + 0z = 1.
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Example Let find all solutions to the system

2x+ y − z = 3

x− 2y + 3z = −1

We use the Gauss elimination in order to deduce(
2 1 −1 | 3
1 −2 3 | −1

)
∼
(

1 −2 3 | −1
2 1 −1 | 3

)
∼
(

1 −2 3 | −1
0 5 −7 | 5

)
The red terms are the leading terms. The corresponding unknowns should be expressed by
others. The unknown which does not have a corresponding leading term should be chosen as a
parameter. Here we take z = t where t ∈ R is a parameter. The last row of the last matrix yields
5y − 7t = 5 and thus y = 7

5 t + 1. We deduce from the first row that x = 1 − 1
5 t. All solutions

are of the form

(x, y, z) = (1, 1, 0) + t

(
−1

5
,

7

5
, 1

)
.

Exercise

• Solve

−x+ py + pz = 1

x+ y + pz = 2

px+ y + 2pz = 5− 2x

where p is a real parameter.

1.4 Square matrices

Definition 1.15. Matrices of type (n, n) where n ∈ N are called square matrices.

Definition 1.16. A matrix I of type (n, n) is called an identity matrix if I = (aij)
nn
i=1,j=1,

aii = 1 for all i ∈ {1, . . . , n} and aij = 0 whenever i 6= j.

For example,

I =

1 0 0
0 1 0
0 0 1


for n = 3. It holds that AI = IA = A for every matrix A of type (n, n).

Definition 1.17. Let A by a matrix of type (n, n). If there is a matrix B of type (n, n) such
that

AB = BA = I

then B will be called an inverse matrix to A and we use notation B = A−1.

The Gauss elimination may be used to find A−1. In particular, one has to write down an
augmented matrix (A|I) and use elementary transformations to get (I,B). If this is possible,
then B = A−1.
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Example Find A−1 to A =

(
2 −1
3 −3

)
:

(
2 −1 | 1 0
3 −3 | 0 1

)
∼
(

2 −1 | 1 0
1 −2 | −1 1

)
∼
(

1 −2 | −1 1
2 −1 | 1 0

)
∼
(

1 −2 | −1 1
0 3 | 3 −2

)
∼
(

1 −2 | −1 1
0 1 | 1 − 2

3

)
∼
(

1 0 | 1 − 1
3

0 1 | 1 − 2
3

)

Consequently, A−1 =

(
1 − 1

3
1 − 2

3

)
.

Definition 1.18. A square matrix is a matrix of type (n, n) for some n ∈ N.
A square matrix A is called regular if there is A−1. Otherwise it is called singular.

Observation 1.4. Let A be a regular matrix. Then a system AxT = bT has a unique solution.

Proof. Indeed, it suffices to apply A−1 from the left side on both sides of equation

AxT = bT

to obtain
xT = A−1bT .

Example The above proof describes another way how to solve a system of equations. Namely,
we can first find A−1 and then xT = A−1bT . Let solve the following two systems

2x+ y + z = 3

x+ 3z = −7

2x+ y = 1

and

2x+ y + z = 0

x+ 3z = 3

2x+ y = −1.

Note that the matrix A of the systems (without the right hand side) is always the same. We
compute A−1 as follows2 1 1 | 1 0 0

1 0 3 | 0 1 0
2 1 0 | 0 0 1

 ∼
1 0 3 | 0 1 0

2 1 1 | 1 0 0
2 1 0 | 0 0 1


∼

1 0 3 | 0 1 0
0 1 −5 | 1 −2 0
0 1 −6 | 0 −2 1

 ∼
1 0 3 | 0 1 0

0 1 −5 | 1 −2 0
0 0 −1 | −1 0 1


∼

1 0 3 | 0 1 0
0 1 −5 | 1 −2 0
0 0 1 | 1 0 −1

 ∼
1 0 0 | −3 1 3

0 1 0 | 6 −2 −5
0 0 1 | 1 0 −1
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Thus, the first system has a solutionxy
z

 =

−3 1 3
6 −2 −5
1 0 −1

 3
−7
1

 =

−13
27
2


and the second system has a solutionxy

z

 =

−3 1 3
6 −2 −5
1 0 −1

 0
3
−1

 =

 0
−1
1

 .

1.5 Determinant

Definition 1.19. Let A be a square matrix of type (1, 1) – i.e., A = (a) for some a ∈ R. The
determinant of such matrix A is detA = a.
Let A = (ai,j) be a square matrix of type (n, n). We denote by Mij the determinant of a
matrix (n− 1, n− 1) which arises from A by leaving out the i−th row and j−th column. Choose
k ∈ {1, . . . , n}. Then

detA = (−1)k+1ak1Mk1 + (−1)k+2ak2Mk2 + . . .+ (−1)k+naknMkn =

n∑
j=1

(−1)k+jakjMkj .

Examples:
Let

A =

(
a11 a12
a21 a22

)
.

Then detA = a11a22 − a12a21.
Let

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 .

Then

detA = a11a22a33 + a12a23a31 + a13a21a32 − a13a22a31 − a12a21a33 − a11a23a32.

Observation 1.5. Let A be a square matrix. Then

• if B arises from A by multiplying one row by a real number α, then detB = α detA.

• If B arises from A by switching two rows, then detB = −detA.

• If B arises from A by adding α−multiple of one row to another one, then detB = detA.

Observation 1.6. Let A be a square matrix having zeros under the main diagonal (i.e., aij = 0
for i > j). Then detA = a11a22a33 . . . ann.

Example Compute detA for

A =


−1 1 0 2
0 3 −3 1
2 −3 0 2
0 0 3 −1

 .
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According to the rules for transformations, we have

det


−1 1 0 2
0 3 −3 1
2 −3 0 2
0 0 3 −1

 = det


−1 1 0 2
0 3 −3 1
0 −1 0 6
0 0 3 −1



= −det


−1 1 0 2
0 −1 0 6
0 3 −3 1
0 0 3 −1

 = −det


−1 1 0 2
0 −1 0 6
0 0 −3 19
0 0 3 −1



= −det


−1 1 0 2
0 −1 0 6
0 0 −3 19
0 0 0 18

 = 54.

Theorem 1.3. Let A be n× n matrix. Statements following are equivalent:

• detA = 0.

• AxT = 0 has a nontrivial solution.

• A is a singular matrix matrix.

• rankA = n.

• Rows of A are linearly dependent vectors.

• Columns of A are linearly dependent vectors.

Theorem 1.4 (the Cramer rule). Consider a system AxT = bT . Assume that A is a regular
n by n matrix. Let j ∈ {1, . . . , n} and denote by Aj a matrix arising from A by replacing j−th
column by a vector bT . Then

xj =
detAj
detA

.

Example We use the Cramer rule to solve

3x− 2y + 4z = 3

−2x+ 5y + z = 5

x+ y − 5z = 0

We have A =

 3 −2 4
−2 5 1
1 1 −5

 and detA = −88.

Further, Ax =

3 −2 4
5 5 1
0 1 −5

 and detAx = −108. Consequently, x = −108
−88 = 27

22 .

Next, Ay =

 3 3 4
−2 5 1
1 0 −5

 and detAy = −122. Consequently y = −122
−88 = 61

44 .

Finally, Az =

 3 −2 3
−2 5 5
1 1 0

 and detAz = −46. Consequently z = −46
−88 = 23

44 .
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1.6 Eigenvalues and eigenvectors

Definition 1.20. Let A be a square matrix. We are looking for λ for which there is a nontrivial
solution to

AxT = λxT .

Such number λ is called eigenvalue.

This means that
(A− λI)xT = 0.

This equation has a nontrivial solution only if A − λI is a singular matrix. Consequently, λ is
an eigenvalue if and only if

det(A− λI) = 0.

Definition 1.21. The polynomial det(A− λI) is called a characteristic polynomial.

Definition 1.22. Let λ be an eigenvalue of A. A vector v solving

(A− λI)v = 0

is called an eigenvector corresponding to λ.

Remark 1.4. If v is an eigenvector then tv is also an eigenvector for all t ∈ R.
Let v and w be eigenvectors corresponding to the same eigenvalue. Then tv + sw is also an
eigenvector for all t, s ∈ R.
Generally, let ui, i = {1, . . . , k} be eigenvectors corresponding to λ. Then all their linear combi-
nations are also eigenvectors corresponding to λ.
In what follows, if we say that there is only one eigenvector v, we mean that there is just one-
dimensional space of eigenvectors spanned by v. If we say that there are two eigenvectors v, w,
we mean that there is two-dimensional space of eigenvectors spanned by v, w. And so on.

Example Find all eigenvalues and eigenvectors to A =

(
5 1
4 5

)
.

First, we find eigenvalues by solving

0 = det

((
5 1
4 5

)
− λ

(
1 0
0 1

))
= det

(
5− λ 1

4 5− λ

)
= 25− 10λ+ λ2 − 4 = λ2 − 10λ+ 21.

We obtain
λ1 = 3, λ2 = 7.

Consider first λ1 = 3. Then we have to solve

(
2 1
4 2

)(
x
y

)
= 0. We have

(
2 1
4 2

)
∼
(
2 1

)
and we take y = t and x = − t

2 . Thus (x, y) = t(−1/2, 1) and v1 = (−1/2, 1) is an eigenvector
related to λ = 3.

Consider λ2 = 7. Then (
−2 1
4 −2

)
∼
(
−2 1

)
.
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and we take y = t and x = t
2 . Consequently, v2 = (1/2, 1) is an eigenvector related to the

eigenvalue λ = 7.

Exercise: Find eigenvalues and eigenvectors to A =

(
10 −9
4 −2

)
.

First, we have to solve

0 = det

(
10− λ −9

4 −2− λ

)
= λ2 − 8λ+ 16.

This yields the only solution λ1 = 4. To find an eigenvector we solve(
6 −9
4 −6

)
∼
(
2 −3

)
.

Thus, (3/2, 1) is an eigenvector.

Exercise: Find eigenvalues and eigenvectors to A =

(
1 0
0 1

)
.

Solve

0 = det

(
1− λ 0

0 1− λ

)
= (1− λ)2.

We get λ = 1. To find eigenvalues we have to solve(
0 0
0 0

)
∼
(
0 0

)
.

The solutions are of the form s(1, 0) + t(0, 1) for all real numbers s, t ∈ R.

Definition 1.23. A generalized eigenvector w corresponding to an eigenvalue λ is a vector
satisfying

(A− λI)wT = vT

where v is an eigenvector corresponding to λ.

Lemma 1.2. Let λ be a double root of the characteristic polynomial. Assume, moreover, that
there is just one corresponding eigenvector. Then there is a generalized eigenvector corresponding
to λ.

Exercise: Consider again the matrix

(
10 −9
4 −2

)
. We already know that λ = 4 is the only

eigenvalue and, consequently, the matrix A− λI has the form(
6 −9
4 −6

)
and the corresponding eigenvector is

(
3 2

)
. We look for a vector w = (x, y) solving(

6 −9
4 −6

)
wT =

(
3
2

)
.

By the Gauss elimination (
6 −9 | 3
4 −6 | 2

)
∼
(
2 −3 | 1

)
Here y = t, t ∈ R is free and we have 2x− 3t = 1 and, therefore, x = 1

2 −
3
2 t. Every vector of the

form
(
1
2 −

3
2 t, t

)
is the generalized eigenvector – for example a vector (−1, 1).
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1.7 Definiteness

Definition 1.24. Let A be an n by n symmetric matrix. The mapping

Q :
Rn → R
v 7→ vAvT

is called a quadratic form.

Examples:

• Quadratic form given by a matrix A =

(
1 −1
−1 1

)
is

(x, y) 7→
(
x y

)( 1 −1
−1 1

)(
x
y

)
= x2 − 2xy + y2

and we write Q(x, y) = x2 − 2xy + y2.

• A matrix A associated with the quadratic form

Q(x, y, z) = x2 − 3xz + y2 − z2

is A =

 1 0 − 3
2

0 1 0
− 3

2 0 −1

.

• A quadratic form given by A =

1 0 2
0 −1 1
2 1 −2

 is

Q(x, y, z) = x2 − y2 − 2z2 + 4xz + 2yz.

Definition 1.25. A quadratic form Q is

• positive-definite if Q(v) > 0 for every v ∈ Rn \ {0}

• positive-semidefinite if Q(v) ≥ 0 for every v ∈ Rn

• negative-definite if Q(v) < 0 for every v ∈ Rn \ {0}

• negative-semidefinite if Q(v) ≤ 0 for every v ∈ Rn

• indefinite if there are v1, v2 ∈ R such that Q(v1) < 0 < Q(v2)

Examples:

• Q(x, y) = x2 − 2xy + y2 is positive-semidefinite since Q(x, y) = (x− y)2 ≥ 0. Note that Q
is not positive-definite as Q(1, 1) = 0.

• Q(x, y) = x2 − y2 is indefinite because Q(1, 0) = 1 > 0 and Q(0, 1) = −1 < 0.

• Q(x, y) = x2 + 2xy + 2y2 is positive-definite because Q(x, y) = (x + y)2 + y2 and this is
always non-negative and Q(x, y) = 0 if and only if x = y = 0.
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• Q(x, y) =
(
x y

)(1 1
1 0

)(
x
y

)
is indefinite. Indeed, Q(x, y) = x2 + 2xy = x(x + 2y) and,

clearly, Q(1, 0) = 1 > 0 and Q(1,−1) = −1 < 0.

Definition 1.26. The definiteness of a symmetric matrix A is inherited from the associated
quadratic form.

Theorem 1.5 (Sylvester rule). Let A be n by n matrix. Denote D0 = 1, D1 = det(a11),

D2 = det

(
a11 a12
a21 a22

)
,. . . , Dn = detA and assume D0, D1, . . . , Dn 6= 0. If all products D0 ·

D1, D1 · D2, . . . , Dn−1Dn are positive, A is a positive-definite matrix. If all the products are
negative, A is a negative-definite matrix.

Examples:

• Q(x, y) = x2 + 2xy + 2y2 is positive-definite (we already know it). Nevertheless, let verify

it by the Sylvester rule. The associated symmetric matrix is

(
1 1
1 2

)
and we have D0 = 1,

D1 = 1, D2 = 1 and Q is indead positive-definite.

• Consider Q(x, y) = −x2 − y2. We have Q(x, y) =
(
x y

)(−1 0
0 −1

)(
x
y

)
and, therefore,

D0 = 1, D1 = −1, and D2 = 1. Consequently, the Sylvester rule yields that Q is negative-
definite.

2 Sequences and series

2.1 Sequences and their limits

Definition 2.1. A function a : N → R, Dom a = N is called a sequence. We write an instead
of a(n). The whole function is then denoted {an}∞n=1.

For example, an = 1
n is a sequence of numbers {1, 12 ,

1
3 ,

1
4 , . . .}. Sequence bn = 2n is a sequence

of numbers {2, 4, 8, 16, 32, . . .}. Note also that the first sequence can be written as
{

1
n

}∞
n=1

and
the second one as {2n}.

Note that the sequence is actually a real function whose domain is a set of natural numbers.
Thus, one can talk about boundedness and monotony in means of definitions from the previous
semester. Nevertheless, let recall a definition of a monotonous sequence.

Definition 2.2. A sequence an is called

• increasing, if an+1 > an for all n ∈ N,

• decreasing, if an+1 < an for all n ∈ N,

• non-increasing, if an+1 ≤ an for all n ∈ N,

• non-decreasing, if an+1 ≥ an for all n ∈ N.

A sequence, which posses one of these properties is a monotone sequence.

Example
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• Lets decide about the boundedness and monotonicity of an = 1− 1
n . The function is clearly

bounded as an ≤ 1 since we subtract a positive number from one and, simultanously, an ≥ 0
since an = 1 − 1

n = n−1
n and this is a ration of two non-negative numbers (recall n ≥ 1).

Lets tackle the monotonicity. First few terms are: a1 = 0, a2 = 1
2 , a3 = 2

3 and therefore
the first quess is that an is increasing. In what follows, we prove that an+1 ≥ an. We have

an+1 = 1− 1

n+ 1
≥ 1− 1

n
= an

where we use that n < n + 1 ⇒ 1
n ≥

1
n+1 ⇒ −

1
n+1 ≥ −

1
n . Therefore, the sequence is

increasing.

• What are the properties of an = n2

2n ? Clearly, this sequence is bounded from below by zero
since it is a ratio of two positive numbers. Concerning the upper bound, this will be solved
later once the notion of limits is introduced. Is this sequence monotone? We have a1 = 1

2 ,
a2 = 1, a3 = 9

8 , a4 = 1 and, clearly this sequence is not monotone as

a2 < a3 > a4.

Definition 2.3. Let an be a sequence. A number A ∈ R is called a limit of an if

∀ε > 0, ∃n0 ∈ N, ∀n ∈ N, n > n0, |an −A| < ε.

We then write lim an = A.
A limit of an is +∞ if

∀M > 0, ∃n0 ∈ N, ∀n ∈ N, n > n0, an > M

and we write lim an = +∞.
A limit of an is −∞ if lim−an = +∞.

Observation 2.1. Let an be a sequence and let A ∈ R∗ be its limit. Then it is determined
uniquely.

Proof. Let there be two numbers A,B ∈ R, A 6= B (here we assume, for simplicity, that both
numbers are real, for other cases see exercises) and let lim an = A and lim bn = B. Take
ε = 1

3 |A−B|. According to definition, there exists n0 such that |an −A| < ε for all n > n0 and
there exists n1 such that |an −B| < ε for all n > n1. Take n > max{n0, n1}. Then

|A−B| = |A− an + an −B| ≤ |A− an|+ |B − an| < ε+ ε < 3ε = |A−B|

which is of course a contradiction.

Examples:

• Consider a sequence an = 1
n . We claim that lim an = 0. Indeed, let ε > 0 be an arbitrary

number. Take n0 ∈ N such that n0 >
1
ε . Then for all n > n0 we have∣∣∣∣ 1n − 0

∣∣∣∣ =
1

n
<

1

n0
< ε.

• Next, consider a sequence an = n (i.e. a sequence {1, 2, 3, . . .}). We claim that lim an =∞.
To prove this, let M > 0 be an arbitrary number. Take a natural number n0 such that
n0 > M . Then for all n > n0 we have an = n > n0 > M .
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• Similarly, it holds that lim qn = ∞ whenever q > 1. Indeed, let M > 0 be an arbitrary
number. Then taking n > logqM , we get qn > M .

Lemma 2.1 (Arithmetic of limits). Let an and bn be sequences and let c ∈ R. Then

lim (an ± bn) = lim an ± lim bn

lim (anbn) = lim an · lim bn

lim can = c lim an

lim
an
bn

=
lim an
lim bn

assuming the right hand side has meaning.

To make the lemma complete we specify what is the ’meaning of the right hand side’. Besides
the usual division by zero there are several others indefinite terms

∞−∞, ∞
∞
, 0 · ∞, 0

0
, 1∞, ∞0, 00

which do not have any meaning. We also recall that 1
∞ = 0.

Proof. Here we proof only a simplified version of this claim as we will assume that lim an = A ∈ R
and lim bn = B ∈ R. Further, as the proof does not differ from the one of Observation ??, we
consider only lim(an + bn) = lim an + lim bn. Take ε > 0 arbitrarily. Since lim an = A and
lim bn = B there exists n0 ∈ N such that |an −A| < 1

2ε and |bn −B| < 1
2ε. Consequently,

|an + bn −A−B| ≤ |an −A|+ |bn −B| < ε

and we have just verified that A+B is a limit of an + bn.

Examples: Let compute several limits.

• First of all, we will prove that lim qn =∞ for q > 1. Thus, we have to show that for every
M there is n0 such that qn > M . In this case, it is enough to take such natural number n0
that n0 > logqM . Then, necessarily, qn > qn0 > qlogq M > M since f(x) = qx is increasing.

• Next, we compute limn2 − n. One may try to write limn2 − n = limn2 − limn =∞−∞.
However, the last term is an indefinite term and the arithmetic of limit cannot be used in
such way. We will proceed as follows

limn2 − n = limn2
(

1− 1

n

)
= limn2

(
1− lim

1

n

)
=∞(1− 0) =∞.

• The general rule how to compute a limit of ’rational sequence’ is to divide by the highest
power of n appearing in the denominator. Let demonstrate this (in both cases we use the
arithmetic of limits as noted):

lim
n+ 1

n2 + 3
= lim

1
n + 1

n2

1 + 3
n2

AL
=

0 + 0

1 + 0
= 0,

lim
n3 + 3n2

3n3 + n2
= lim

1 + 3 1
n

3 + 1
n

AL
=

1 + 3 · 0
3 + 0

=
1

3
.
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• Let compute a limit lim qn with q ∈ (0, 1). By use of the arithmetic of limits and the
previous claim we compute

lim qn = lim

(
1
1
q

)n
AL
=

1

lim
(

1
q

)n =
1

∞
= 0.

Observation 2.2. Let an be a sequence with real (finite) limit A. Then an is a bounded sequence.

Proof. Indeed, take (for instance) ε = 1. There exists n0 ∈ N such that {an}n>n0
is bounded

from above by A+ 1 and from below by A− 1. Next, {a1, a2, . . . , an0
} is a finite set and thus it

is bounded from above (say by M ∈ R) and from below by m ∈ R. Then, {an}∞n=1 is bounded
from above by max{M,A+ 1} and from below by min{m,A− 1}.

Theorem 2.1 (Heine). Let c ∈ R∗ and let d ∈ R∗. Then limx→c f(x) = d if and only if
lim f(xn) = d for every sequence xn such that limxn = c.

The Heine theorem allows to use the l’Hospital rule to compute the limits of sequences.
Example

• Let consider a sequence n2

2n . We have

lim
n2

2n
Heine

= lim
x→∞

x2

2x
l′H, ∞∞= lim

x→∞

2x

2x ln 2

l′H, ∞∞= lim
x→∞

2

2x ln 4
= 0.

Lemma 2.2 (Sandwich lemma). Let an, bn, cn be such that an ≤ bn ≤ cn for all n ∈ N. Assume,
moreover, that lim an = lim cn = A ∈ R∗. Then lim bn exists and lim bn = A.

Proof. Take an arbitrary ε > 0. There exists n0 ∈ N such that for all n > n0 we have |an−A| < ε
and |cn −A| < ε. There may appear one of the following cases:

• A ≥ cn. In that case, |bn −A| ≤ |an −A| < ε.

• A ≤ an. In that case, |bn −A| ≤ |cn −A| < ε.

• A ∈ (an, cn). In that case, since bn ∈ [an, cn], we have |bn − A| < |an − cn| = |an − A +
A− cn| ≤ |an −A|+ |bn −B| < 2ε.

No matter which one is true, we have |bn − A| < 2ε and A is a limit of bn according to the
definition of limit.

Definition 2.4. Let an be a sequence and let k : N 7→ N be an increasing sequence of natural
numbers. Then akn is a subsequence.

Observation 2.3. Let an be a sequence such that lim an = A, A ∈ R∗. Then every subsequence
akn has a limit A.

Proof. Once again, we assume for simplicity that A ∈ R. For arbitrary ε > 0 there exists n0
such that |an − A| < ε. However, as kn is an increasing sequence of natural numbers, there
exists n1 ∈ N such that kn > n0 whenever n > n1. That means that for ever n > n1 we have
|akn −A| < ε. The proof is complete.

Example
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• Let consider a limit lim(−1)n (so an = (−1)n). The sequence of the odd terms is a2n+1 =
(−1)2n+1 = −1 and clearly lim a2n+1 = −1. On the other hand, the sequence of the even
terms is a2n = (−1)2n = 1 and thus lim a2n = 1. Consequently, the limit in question does
not exist.

Theorem 2.2 (Heine). Let c ∈ R∗ and let d ∈ R∗. Then limx→c f(x) = d if and only if
lim f(xn) = d for every sequence xn such that limxn = c.

Example

• The previous theorem allows us to use the tools of the limits of functions. Let compute

lim
(
n+1
n−1

)n
. We use first the Heine theorem to rewrite it as follows

lim

(
n+ 1

n− 1

)n
Heine

= lim
x→∞

(
x+ 1

x− 1

)x
= lim
x→∞

eln( x+1
x−1 )x.

Due to the theorem about the limit of the composed functions, it suffices to compute the
limit of the exponent. In particular

lim
x→∞

ln

(
x+ 1

x− 1

)
x = lim

x→∞

ln
(
x+1
x−1

)
(
x+1
x−1

)
− 1

2

x− 1
x = 2

and thus the limit in question is e2. We used tools for the limits of functions (limit of

composed functions, limx→0
ln(x+1)

x = 0) and this was able just due to the Heine theorem.

2.2 Series

1
2

1
4

1
8

Can be a sum of infinitely many positive number finite? The picture suggests that the sum

1

2
+

1

4
+

1

8
+

1

16
+ . . .

might be finite. Lets do it precisely. First, we recall that

(q + 1)(q − 1) = q2 − 1

(q2 + q + 1)(q − 1) = q3 − 1(
qn + qn−1 + qn−2 + . . .+ q + 1

)
(q − 1) = qn+1 − 1

for every q ∈ R. We infer that for q 6= 1 it holds that

qn + qn−1 + qn−2 + . . .+ q + 1 =
qn+1 − 1

q − 1

(
=

1− qn+1

1− q

)
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which might be reformulated as
n∑
i=0

qi =
1− qn+1

1− q
.

We proceed to a limit with n. Assume q ∈ (−1, 1). Then limn→∞ qn+1 = 0 and we deduce

∞∑
i=0

qi =
1

1− q
.

Thus,

1

2
+

1

4
+

1

8
+

1

16
+ . . . =

∞∑
i=1

(
1

2

)i
=

∞∑
i=0

(
1

2

)i
− 1 =

1

1− 1
2

− 1 =
1
1
2

− 1 = 1.

Or, equivalently,

1

2
+

1

4
+

1

8
+

1

16
+ . . . =

1

2

(
1 +

1

2
+

1

4
+

1

8
+ . . .

)
=

1

2

∞∑
i=0

(
1

2

)i
=

1

2

(
1

1− 1
2

)
= 1.

Definition 2.5. Let {ai}∞i=0 ⊂ R be a sequence. We define the n−th partial sum

sn =

n∑
i=0

ai.

If limn→∞ sn exists and is finite, than we say that
∑∞
i=0 ai converges and its value is limn→∞ sn.

If a sum does not converge, we say that it diverges.

Observation 2.4. Let
∑∞
i=0 ai converges, then limn→∞ an = 0.

Proof. It holds that
lim
n→∞

an = lim
n→∞

sn − sn−1 = 0

where the last equality is true because of the arithmetic of limits.

The last observation is quite intuitive. It states that if a sum of infinitely many numbers
is finite then necessarily, these numbers have to converge to zero. On the other hand, numbers
which do not converge to zero cannot give finite sum.
Example

• Take an = 1. The sum
∞∑
n=1

1

necessarilly diverge. Indeed, we have sn = n and lim sn = limn =∞.

Is this condition sufficient? Is it true that

lim
n→∞

an = 0⇒
∞∑
i=0

an <∞?

Example
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• Consider
∑∞
i=1

1
i . We have(

1

i+ 1
+

1

i+ 2
+ . . .+

1

i2

)
> (i2 − i) 1

i2
= 1− 1

i

and therefore
1

i
+

1

i+ 1
+

1

i+ 2
+ . . .+

1

i2
> 1.

Thus, we may split the sum into infinitely many (finite) subsums each giving a number
higher than one. Therefore,

∞∑
i=1

1

i
=∞

despite the fact that limi→∞
1
i = 0.

Roughly speaking: If an tends to zero sufficiently fast,
∑∞
n=0 an converges. What does it mean

sufficiently fast and how we verify that?

2.3 Series of positive numbers

Throughout this subsection, we assume that an > 0 for every n ∈ {0, 1, 2, 3, . . .}.

Theorem 2.3. Let {an}∞n=0 ⊂ R and {bn}∞n=0 ⊂ R fulfill an ≤ bn for every n ∈ {0, 1, 2, 3, . . .}.
Then

• if
∑∞
n=0 bn converges, then also

∑∞
n=0 an converges,

• if
∑∞
n=0 an diverges, then also

∑∞
n=0 bn diverges.

Example

• Does
∞∑
n=0

2n + n

5n

converge or diverge?
Since n ≤ 2n, we deduce

2n + n

5n
≤ 2n + 2n

5n
= 2

2n

5n

and since
∞∑
n=0

2
2n

5n
= 2

∞∑
n=0

(
2

5

)n
= 2

1

1− 2
5

<∞,

we get the convergence of the given series.

To succesfully use the comparison criterion, we need to know the following scales:

• It holds that
∞∑
n=0

qn

converges for q ∈ (0, 1) and diverges for q ≥ 1.
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• It holds that
∞∑
n=1

1

np

converges for p > 1 and diverges for p ≤ 1.

Example

• Does
∞∑
n=1

√
n+ 1−

√
n

converge or diverge?
First, we deduce that

√
n+ 1−

√
n = 1√

n+1+
√
n

and we have 1√
n+1+

√
n
≥ 1

2
√
n+1

. Further

∞∑
n=1

1

2

1√
n+ 1

=
1

2

∞∑
n=2

1√
n

=
1

2

∞∑
n=2

1

n1/2

where the last series diverge. Therefore, we found a divergent series consisting of numbers
lower than the original series and we infer, that the given series diverges.

The d’Alambert criterion (ration test): Let {an}∞n=0 ⊂ R be a sequence of positive real
numbers. Then

• if limn→∞
an+1

an
< 1 then

∑∞
n=0 an converges,

• if limn→∞
an+1

an
> 1 then

∑∞
n=0 an diverges.

Remark 2.1. If limn→∞
an+1

an
= 1 then the ration test is insufficient as it cannot decide whether

the series converges or not.

Example Let examine
∞∑
n=0

(n!)2

(2n)!
.

(First, recall that n! denotes a factorial of n which is defined as follows:0! = 1, n! = n(n − 1)!.)

We use the ration test with an = (n!)2

(2n)! . We have

lim
n→∞

((n+1)!)2

(2n+2)!

(n!)2

(2n)!

= lim
n→∞

((n+ 1)!)2

(n!)2
(2n)!

(2n+ 2)!

= lim
n→∞

(n+ 1)2
1

(2n+ 2)(2n+ 1)
= lim
n→∞

n2 + 2n+ 1

4n2 + 6n+ 2
=

1

4
.

Since 1
4 is strictly less than 1, the given sum is finite due to the ration test.

The Cauchy criterion (root test): Let {an}∞n=0 ⊂ R be a sequence of positive real numbers.
Then

• if limn→∞ n
√
an < 1 then

∑∞
n=0 an converges,

• if limn→∞ n
√
an > 1 then

∑∞
n=0 an diverges.
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Remark 2.2. If limn→∞ n
√
an = 1 then the root test is insufficient as it cannot decide whether

the series converges or not.

Example Examine a sum
∞∑
n=1

(
n− 1

n+ 1

)n(n−1)
.

We use the root test. We have

lim
n→∞

n
√
an = lim

n→∞

(
n− 1

n+ 1

)(n−1)

= lim
n→∞

(
1− 2

n+ 1

)(n−1)

= e−2 < 1.

Therefore, the root test yields the convergence of the given sum.

2.4 Series of numbers with arbitrary sign

From now on we will consider sums
∑∞
n=0 an where, apriori, there is no assumption on the sign

of an.

Definition 2.6. Let
∞∑
n=0

|an|

converges. Then we say that
∑∞
n=0 an is absolutely convergent (or converges absolutely)

Observation 2.5. Let
∑∞
n=0 an converge absolutely. Then it converges.

Example Does a sum
∞∑
n=1

sinn

n2

converge or diverge?
First, let examine the absolute convergence of the series. Consider a sum

∞∑
n=1

| sinn|
n2

.

We have
| sinn|
n2

≤ 1

n2

and since
∑∞
n=1

1
n2 converges, we obtain the absolute convergence of the given sum. Therefore,

the given sum converges.
The Leibnitz criterion Let {an}∞n=0 ⊂ R be a sequence of positive numbers such that

• limn→0 an = 0.

• an is a monotone sequence.
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Then,
∞∑
n=0

(−1)nan

converges.
Example Consider the sum

∞∑
n=1

(−1)n
√
n

n+ 100
.

In order to use the Leibnitz criterion, we have to verify two assumptions. First of all

lim
n→∞

√
n

n+ 100
= lim
n→∞

1/
√
n

1 + 100
n

= 0

and the first assumption is true.
Next, let show that the sequence is monotone (i.e. decreasing). We have to verify that an+1 < an.
Since the members of the sequence are positive, we can instead verify that a2n+1 < a2n. We have

n

n2 + 200n+ 10000
>

n+ 1

n2 + 202n+ 10201

n3 + 202n2 + 10201n > n3 + 201n2 + 10200n+ 10000

n2 + n > 10000.

and we see, that starting from, say n = 100, the demanded inequality is true and the sequence
is decreasing. Since the finite number of terms does not matter, we may deduce that

∞∑
n=100

(−1)n
√
n

n+ 100

converges but this in turn implies that

∞∑
n=1

(−1)n
√
n

n+ 100

converges as well.

2.5 Gordon’s growth model

Shares bought at a time t = 0 for P0 give us at time t = 1 the following return r

r =
Div1 + P1 − P0

P0

where Div1 is the dividend paid during the first year. We deduce

P0 =
Div1
1 + r

+
P1

1 + r
.

This can be used iteratively. In particular, since

P1 =
Div2
1 + r

+
P2

1 + r
,
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we deduce

P0 =
Div1
1 + r

+
Div2

(1 + r)2
+

P2

(1 + r)2
.

Consequently

P0 =

∞∑
t=1

Divt
(1 + r)t

.

We assume constant growth of the dividends, in particular we assume Div1 given and Divt =
(1 + g) ·Divt−1. Consequently

P0 =
Div1

(
r − g)

2.6 Remark on exponential function

It holds that

ex =

∞∑
n=0

xn

n!

where we remind that 0! = 1.

3 Functions of multiple variables

3.1 Few words about topology

Definition 3.1. An open ball centered at (x0, y0) ∈ R2 with radius r ∈ (0,∞) is a set

Br(x0, y0) = {(x, y) ∈ R2, ‖(x, y)− (x0, y0)‖ < r}.

r

(x0, y0)

Definition 3.2. A set M ⊂ R2 is open if for every (x0, y0) ∈ M there is r > 0 such that
Br(x0, y0) ⊂M .
A set M is called closed if R2 \M is open.

Example A set M := (0, 1) × (0, 1) is open. Indeed, let (a, b) ∈ M . Define δ = min{a, b, 1 −
a, 1 − b}. Since a ∈ (0, 1) and b ∈ (0, 1) we have δ > 0. Necessarily, Bδ/2(a, b) ⊂ M . On the
other hand, a set M := [0, 1] × (0, 1) is not open. Consider for example a point (1, 1/2) ∈ M .
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Then every ball Br(1, 1/2) contains a point (1 + r/2, 1/2) which is outside of M . Note that M
is not closed. Why?

Remark 3.1. • ∅ and R2 are open sets (and closed sets as well),

• a union of open sets is an open set,

• an intersection of two open sets is an open set,

• a union of two closed sets is a closed set,

• an intersection of closed sets is a closed set.

Observation 3.1. Let f : R2 7→ R be a continuous function. Then f−1(A) is an open set for
every A ⊂ R open. Similarly, f−1(B) is a closed set for every B ⊂ R closed.

Question What is a continuous function? We will see later.
For now: A projection p : R2 7→ R, p(x, y) = x is a continuous function (as well as projection
q(x, y) = y). A sum, difference and product of two continuous functions are continuous functions.
A quotient of two continuous function is again a continuous function. A composition of two
continuous function is a continuous function.

Example Let consider a set

M := {(x, y), x ∈ (−1, 1), y < x2}.

Is this set open? First, f(x, y) = |x| is a continuous function. Indeed, f(x, y) = |p(x, y)| is a
composition of p and | · |. Thus, f−1((−∞, 1)) = {(x, y) ∈ R2, x ∈ (−1, 1)} is an open set.
Next, g(x, y) = y−x2 is a continuous function. Indeed, g(x, y) = q(x, y)−p(x, y)2. Consequently,
f−1((−∞, 0)) = {(x, y) ∈ R2, y − x2 < 0} = {(x, y) ∈ R2, y < x2}.
Since M = f−1((−∞, 1)) ∩ g−1((−∞, 0)), we deduce that M is open.

Definition 3.3. An interior of set M ⊂ R2 is a set M0 of all points (x0, y0) for which there is
r > 0 such that Br(x0, y0) ⊂M . Equivalently, it is the biggest open set contained in M .
A closure of a set M ⊂ R2 is a set M defined as M := R2 \ (R2 \M)0. Equivalently, it is the
smallest closed set containing M .
A boundary of a set M is denoted by ∂M and it is defined as M \M0.

Example Consider M = [0, 1] × (0, 1). Then M0 = (0, 1) × (0, 1) and M = [0, 1] × [0, 1]. We
deduce that

∂M = M \M0 = ([0, 1]× {0, 1}, {0, 1} × [0, 1]) .

Definition 3.4. Let M ⊂ R2. A point (x0, y0) ∈ R2 is a limit point of M if Br(x0, y0)∩M 6= ∅
for every r > 0.
A point (x0, y0) ∈ M is an isolated point of M if there is r > 0 such that Br(x0, y0) ∩M =
{(x0, y0)}.

Example Consider a set M := {(x, y) ∈ R, y = 0, x = 1/n, n ∈ N}. We claim, that (0, 0)
is a limit point of M . Indeed, let r > 0. Then there is nr such that nr > 1/r and, clearly,
(1/nr, 0) ∈M is such point that ‖(1/nr, 0)− (0, 0)‖ < r and thus Br(0, 0) ∩M = (1/nr, 0).
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3.2 Introduction to functions

Definition 3.5. Let M ⊂ Rn, n ∈ N be a nonempty set. A real function of multiple vari-
ables defined on a set M is a formula f which assigns a (unique) real number y to every
(x1, x2, . . . , xn) ∈M . We use the notation

y = f(x1, x2, . . . , xn).

To denote the function itself we use a notation f : M 7→ R. The set M is called a domain of f
and we write M = Dom f .

Remark 3.2. In case n = 2 or n = 3 we use (x, y) or (x, y, z) instead of (x1, x2) or (x1, x2, x3).

Usually, the function will be given only by its formula without any specific domain. In that
case, we assume that the domain is a maximal set for which has the formula sense. For example,
a function

f(x, y) = log(x+ y)

is defined on a set
Dom f = {(x, y) ∈ R2, x+ y > 0}.

Example

• Find (and sketch) a maximal set M ⊂ R2 of such pairs (x, y) for which the function

f(x, y) =
1√

x2 + y − 1
.

Necessarily,
√
x2 + y − 1 > 0 and we deduce that the function has sense for all pairs

satisfying
x2 + y − 1 > 0

which is a part of the plane bounded by certain parabola.

Definition 3.6. Let z = f(x, y) be a function of two variables. The graph of f is a set

graphf = {(x, y, f(x, y) ∈ R3, (x, y) ∈ Dom f}.

Definition 3.7. A contour line C at height z0 ∈ R is a set

{(x, y) ∈ R2, f(x, y) = z0}.

Example

• Find contour lines at heights z0 = −2,−1, 0, 1, 2 for a function

f(x, y) =
x2 + y2

2x
.

First of all, the domain of this function does not contain the y axis.
Take z0 = −2. Then f(x, y) = −2 yields (x + 2)2 + y2 = 4 and the contour line is the
circle centered at (−2, 0) with radius r = 2 which do not contain the origin (because of the
domain of f).
Similarly, For z0 = −1 we get the circle centered at (−1, 0) with radius r = 1 which do not
contain the origin.
The countour line at height z0 = 0 is empty. For z0 = 1 we get the circle centered at (1, 0)
with radius r = 1 not containing the origin.
And finally, for z0 = 2 the contour line is a circle of radius r = 2 with center at (2, 0) with
exception of the origin.
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Definition 3.8. Let M ⊂ Rn and f : M → R. Next, let ϕ : I → M is a curve (I ⊂ R is an
interval). Then f ◦ ϕ is a cross-section of f along ϕ.

Examples

• What is the graph of a function

f(x, y) = (x+ y)2

on a line pa : (x, y) = (a, 0) + t(1, 1), t ∈ R for some a ∈ R? And how about lines
qb : (x, y) = (b, 0) + t(1,−1), t ∈ R for some b ∈ R ?

First,
f(a+ t, t) = (a+ 2t)2

and the graph of f along line pa is a convex parabola with vertex in t0 = −a2 .

Next,
f(b+ t,−t) = (b)2

and the graph is a horizontal line at height b2.

• Lets find the graph of a cross-section

f(x, y) =
1

x2 + y2

along lines
(x, y) = t(cosα, sinα), t ∈ (0,∞)

where α ∈ [0, 2π) is a parameter. The function g = f ◦ ϕ is given as

g(t) = f(t cosα, t sinα) =
1

t2(cos2 α+ sin2 α)
=

1

t2
.

Similarly as above, the sketch of the graph remains as an exercise for the kind reader.

Algebra of functions of two variables:
Sum, product and division is defined ’pointwisely’. Consider, for example, functions f(x, y) = exy

and g(x, y) =
√

1− x2 − y2. Then

• (f + g)(x, y) = exy +
√

1− x2 − y2,

• (fg)(x, y) = exy
√

1− x2 − y2,

• f
g (x, y) = exy√

1−x2−y2
. Beware, here we have to exclude from the domain all points where g

equals zero.

Composition of functions: Let M ⊂ Rm, f : M → Rn (this means that there are n functions
fi : M → R, i ∈ {1, . . . , n}) and g : Rn 7→ R. Then a composition is a function h = g ◦ f defined
as

h(x1, . . . , xm) = g(f1(x1, . . . , xm), f2(x1, . . . , xm), . . . , fn(x1, . . . , xm)).

Similarly, if f : M 7→ R and g : R 7→ R then h = g ◦ f is defined as h(x1, . . . , xm) =
g(f(x1, . . . , xm))

We can also introduce the boundedness of a function f : M ⊂ Rn 7→ R. This can be done
similarly to the one dimensional case. The precise definition of a bounded function is left as an
exercise.
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3.3 Continuity

Definition 3.9. We say that f : M 7→ R is continuous at a point (x0, y0) ∈M if

∀ε > 0, ∃δ > 0, ∀(x, y) ∈ (M ∩Bδ(x0, y0)) , |f(x, y)− f(x0, y0)| < ε.

Let N ⊂ M and let f : M 7→ R be continuous at all points (x0, y0) ∈ N . Then we say that f is
continuous on N . If f is continuous on Dom f then we simply say that f is continuous.

Observation 3.2. Let f1 and f2 be continuous functions. Then

f1 + f2, f1 − f2 and f1f2

are continuous function. Moreover, f1
f2

is a continuous function on a set {(x, y) ∈ R2, f2(x, y) 6=
0}. Further, f1 ◦ f2 is also a continuous function. We remind that f(x, y) = x and f(x, y) = y
are continuous function.

Example

• A function

f(x, y) =
x+
√
x+ y

1 + cos2 x

wherever it is correctly defined, this means a set

{(x, y) ∈ R2, y > −x}.

3.4 Limits

Definition 3.10. Let (x0, y0) be a limit point of M ⊂ R2 and let f : M 7→ R. We say that a
limit of f at the point (x0, y0) is A ∈ R if

∀ε > 0, ∃δ > 0, ∀(x, y) ∈ (M ∩Bδ(x0, y0)), |f(x, y)−A| < ε.

We write lim(x,y)→(x0,y0) f(x, y) = A.
We say that a limit of f at the point (x0, y0) is ∞ if

∀M > 0, ∃δ > 0, ∀(x, y) ∈ (M ∩Bδ(x0, y0)), f(x, y) > M.

We write lim(x,y)→(x0,y0) f(x, y) =∞.
We say that a limit of f at the point (x0, y0) is −∞ if lim(x,y)→(x0,y0)−f(x, y) = −∞.

Observation 3.3 (Arithmetic of limits). Let f and g be two functions and let (x0, y0) be a limit
point of Dom f and of Dom g. Then

lim
(x,y)→(x0,y0)

(f + g)(x, y) = lim
(x,y)→(x0,y0)

f(x, y) + lim
(x,y)→(x0,y0)

g(x, y)

lim
(x,y)→(x0,y0)

fg(x, y) = lim
(x,y)→(x0,y0)

f(x, y) lim
(x,y)→(x0,y0)

g(x, y)

lim
(x,y)→(x0,y0)

f

g
(x, y) =

lim(x,y)→(x0,y0) f(x, y)

lim(x,y)→(x0,y0) g(x, y)
.

assuming the right hand side is well defined.

The numbers∞−∞, 0 ·∞, 0
0 , ∞∞ are not well defined (similarly to the one dimensional case).
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Observation 3.4. A function f is continuous at point (x0, y0) ∈ Dom f if and only if lim(x,y)→(x0,y0) f(x, y) =
f(x0, y0).

Example

• Consider a function

f(x, y) =
x2y2

x2y2 + (x− y)2
.

This function is not defined at (0, 0). It is possible to define the value f(0, 0) in such a way
that f is continuous? In particular, does there exists a finite limit

lim
(x,y)→(0,0)

f(x, y)?

First, we approach (0, 0) along the line y = 0. We have

lim
(x,0)→(0,0)

f(x, 0) = lim
x→0

0

x2
= 0.

Next, we approach (0, 0) along the line x = y. We have

lim
(x,x)→(0,0)

f(x, x) = lim
x→0

x4

x4
= 1.

As a result, lim(x,y)→(0,0) f(x, y) does not exist.

Lemma 3.1 (Sandwich lemma). Let f, g, h be three functions defined on Bδ(x0, y0) \ {(x0, y0)}
for some δ > 0. Assume

∀(x, y) ∈ Bδ(x0, y0) \ {(x0, y0)}, g(x, y) ≤ f(x, y) ≤ h(x, y).

If lim(x,y)→(x0,y0) g(x, y) = lim(x,y)→(x0,y0) h(x, y) = A ∈ R then also

lim
(x,y)→(x0,y0)

f(x, y) = A.

Corollary 3.1. lim(x,y)→(x0,y0) |f(x, y)| = 0⇒ lim(x,y)→(x0,y0) f(x, y) = 0.

Example

• Compute

lim
(x,y)→(0,0)

xy√
x2 + y2

.

We use notation f(x, y) = xy√
x2+y2

. First of all, we have limx→0 f(x, 0) = 0 and limy→0 f(0, y) =

0. Thus, if there is a limit, it is equal to 0. We use the well known AM-GM inequality
(2|xy| ≤ (x2 + y2)) to deduce

0 ≤ |xy|√
x2 + y2

≤ x2 + y2√
x2 + y2

=
√
x2 + y2 → 0

as (x, y) → 0. The sandwich lemma yields lim(x,y)→(0,0) |f(x, y)| = 0 and we have just
proven that the given limit is equal to 0.
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3.5 Derivatives

Definition 3.11. Let f : M ⊂ Rn → R and v ∈ Rn be such that ‖v‖ = 1. Let x0 ∈ M0. The
derivative of f with respect to direction v in a point x0 is

Df(x0, v) = g′(t)|t=0 where g(t) = f(x0 + tv)

Remark 3.3. The direction of an arbitrary vector v is a unit vector v
‖v‖ .

Examples

• What is the direction of a line p : (x, y) = (2,−1) + t(1, 3)? The size of (1, 3) is
√

12 + 32 =√
10. Consequently, the direction of the line is

(
1√
10
, 3√

10

)
.

• Let f(x, y) = x2ey. Let compute Df
(

(1, 0),
(

1√
2
, 1√

2

))
. The line p(t) passing through

(1, 0) with the demanded direction has expression

p(t) =

(
1 +

t√
2
,
t√
2

)
.

Thus

Df

(
(1, 0),

(
1√
2
,

1√
2

))
=

((
1 +

t√
2

)2

e
t√
2

)′∣∣∣∣∣
t=0

= 1

Definition 3.12. We define partial derivatives with respect to xi as

∂f

∂xi
(x0) = lim

h→0

f(x0 + hei)− f(x0)

h
.

where ei is the vector whose i−th component is 1 and all other components are zero.

Remark 3.4. It holds that

∂f

∂x
(x, y) = Df((x, y), (1, 0)),

∂f

∂y
(x, y) = Df((x, y), (0, 1))

whenever f is a function of two variables. Similarly, one can deduce the same rule also for a
function of n variable.

Definition 3.13. Let x0 ∈ Dom f ⊂ Rn. A vector of first partial derivatives

∇f(x0) =

(
∂f

∂x1
(x0), . . . ,

∂f

∂xn
(x0)

)
is called the gradient of f at x0.

Example

• Let compute ∂f
∂x and ∂f

∂y for a function

f(x, y) = 3x2y + x2 + log(x2 + y2).

Let first compute ∂f
∂x . In that case we treat y as a constant and we deduce that

∂f

∂x
= 6xy + 2x+

2x

x2 + y2
.
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In order to compute ∂f
∂y we treat x as a constant and we get

∂f

∂y
= 3x2 +

2y

x2 + y2
.

We remark that in this case we have

∇f(x, y) =

(
6xy + 2x+

2x

x2 + y2
, 3x2 +

2y

x2 + y2

)
.

Definition 3.14. We define second order partial derivatives as follows

∂2f

∂x2i
=

∂

∂xi

(
∂f

∂xi

)
,

∂2f

∂xi∂xj
=

∂

∂xi

(
∂f

∂xj

)
whenever i, j ∈ {1, . . . , n}, i 6= j. Analogously we define the third and higher order partial
derivatives. The matrix of second derivatives

(∇2f) =

(
∂

∂xi

∂f

∂xj

)n
i,j=1

is called the Hess matrix.

Example

• Let compute the first and second order derivatives for f(x, y) = x
y − e

xy. We have

∂f

∂x
=

1

y
− yexy, ∂f

∂y
= − x

y2
− xexy

∂2f

∂x2
= −y2exy, ∂2f

∂y∂x
= − 1

y2
− exy − xyexy

∂2f

∂y2
= 2

x

y3
− x2exy, ∂2f

∂x∂y
= − 1

y2
− exy − xyexy.

The corresponding Hess matrix is

∇2f =

( −y2exy − 1
y2 − e

xy − xyexy
− 1
y2 − e

xy − xyexy 2 x
y3 − x

2exy

)
Observation 3.5. Let the second order derivative of a function f be continuous. Then

∂2f

∂x∂y
=

∂2f

∂y∂x
.

Theorem 3.1 (Chain rule – derivative of a composed function). Let n = 1 or 2 and let f :
Rn 7→ R2 and g : R2 7→ R. Then

∂(g ◦ f)

∂xi
=

∂g

∂y1

∂f1
∂xi

+
∂g

∂y2

∂f2
∂xi

, i = {1, n}.

Example
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• Let f(x) = g(sinx, cosx). Then

∂f

∂x
=
∂g

∂a
cosx− ∂g

∂b
sinx

where we use a notation g = g(a, b).

• Let f(x, y) =
√
x2 − y2 and let x = x(t) = e2t and y = e−t. Let compute ∂f(x(t),y(t))

∂t :

∂f(x(t), y(t))

∂t
=
∂f

∂x

∣∣∣∣
(x(t),y(t))

∂x(t)

∂t
+
∂f

∂y

∣∣∣∣
(x(t),y(t))

∂y(t)

∂t

=
x√

x2 − y2

∣∣∣∣∣
(e2t,e−t)

2e2t +
−y√
x2 − y2

∣∣∣∣∣
(e2t,e−t)

(−e−t) =
2e4t + e−2t√
e4t − e−2t

.

3.6 Differential

Consider a function f : R2 → R. We try to compute an increment of a function if we move from
the point (x0, y0) to the point (x0 + h, y0 + k), i.e., ∆f(x0, y0) = f(x0 + h, y0 + k)− f(x0, y0). It
can be written as

∆f(x0, y0) = f(x0 + h, y0 + k)− f(x0 + h, y0) + f(x0 + h, y0)− f(x0, y0).

Assuming |h| and |k| are sufficiently small we can us an approximation

f(x0 + h, y0 + k)− f(x0 + h, y0) ∼ ∂f

∂x
(x0 + h, y0)k

f(x0 + h, y0)− f(x0, y0) ∼ ∂f

∂y
(x0, y0)h

Moreover, ∂f
∂x (x0 + h, y0) ∼ ∂f

∂x (x0, y0) if1 f ∈ C1. This yields

f(x0 + h, y0 + k)− f(x0, y0) ∼ ∂f

∂x
(x0, y0)h+

∂f

∂y
(x0, y0)k.

We denote by dx the change in the x coordinate and dy the change in the y coordinate.

Definition 3.15. Let f ∈ C1. Then

df(x0, y0) =
∂f

∂x
(x0, y0)dx+

∂f

∂y
(x0, y0)dy

is called the differential of f at the point (x0, y0).

The differential of a function can be used to determine approximate values. Let for exam-
ple determine

√
(0.03)2 + (2.89)2. Consider a function f(x, y) =

√
x2 + y2. We have ∇f =(

x√
x2+y2

, y√
x2+y2

)
. We choose x0 = 0 and y0 = 3. We have dx = 0.03 and dy = −0.11. It

holds that √
(0.03)2 + (2.89)2 ∼

√
02 + 32 + 0 · 0.03 + 1 · (−0.11) = 2.89

1Here f ∈ C1 means that f has continuous first partial derivatives.
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Remark 3.5. It is worth to mention that df(x0, y0) = ∇f(x0, y0) · (dx, dy). This allows to
generalize the above notion also for functions of more variables. In particular, if f : Rn → R,
then2

df = ∇f · (dx1,dx2, . . . ,dxn).

Definition 3.16. Let f : R2 → R have continuous partial derivatives at point (x0, y0). Then the
tangent plane of the graph of f at point (x0, y0) is a plane with equation

z = f(x0, y0) +∇f(x0, y0) · (x− x0, y − y0).

Example

• Let compute a tangent plane of the graph of f at point (1, 2) for f(x, y) =
√

9− x2 − y2.
We have

∇f(x, y) =

(
− x√

9− x2 − y2
,− y√

9− x2 − y2

)
and ∇f(1, 2) = (−1/2,−1). Thus, the tangent plane is

z = 2− 1/2(x− 1)− 1(y − 2) = 9/2− x/2− y.

3.7 The Taylor polynomial

An approximation by a differential is deduced above. In particular

f(x, y) ∼ f(x0, y0) +
∂f

∂x
(x− x0) +

∂f

∂y
(y − y0). (3)

Recall that we use it to compute
√

(0.03)2 + (2.89)2.
The above considerations leads to the definition of the first-order Taylor polynomial at a point
(x0, y0) as3

T1(x, y) = f(x0) +∇f(x0) · (x− x0)

whenever f : Rn → R. If f is a function of two variables then the graph of T1 is also a tangent
plane to the graph of the function f at the point (x0, y0) and it is the only plane which is the
best approximation of the function near the point (x0, y0).

Definition 3.17. Let f : M ⊂ Rn → R and x0 ∈ M . We define the second order Taylor
polynomial at a point x0 as

T2(x) = f(x0) +∇f(x0) · (x− x0) +
1

2
(x− x0)(∇2f(x0))(x− x0)T .

Let us just remind that the last term is actually the quadratic form considered in Chapter
1.7
Examples

2And here u ·v is a scalar multiplication of two vectors with same dimension. It can be understood as a matrix
multiplication u · vT .

3As above, ∇f(x0) · (x − x0) is a scalar product and it can be seen as a multiplication of two matrices, in
particular, ∇f(x, y) · (x− x0)T .
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• Let compute the second order Taylor polynomial of f(x, y) =
√

9− x2 − y2 (the function
from the previous exercise) at (1, 2). First, we have

∇2f(x, y) =


−
√

9−x2−y2+ x2√
9−x2−y2

9−x2−y2 − xy√
9−x2−y2

3

− xy√
9−x2−y2

3

−
√

9−x2−y2+ y2√
9−x2−y2

9−x2−y2

 .

Therefore

∇2f(1, 2) =

(−3
8 −1
−1 0

)
and thus

T2(x) = f(1, 2) +∇f(1, 2) · (x− 1, y − 2) +
1

2
(x− 1, y − 2)(∇2f(1, 2))(x− 1, y − 2)

= 2 +

(
−1

2
,−1

)
· (x− 1, y − 2) +

1

2
(x− 1, y − 2)

(−3
8 −1
−1 0

)
(x− 1, y − 2)

= 2− 1

2
x+

1

2
− y + 2 +

1

2

(
−3

8
(x− 1)2 − 2(x− 1)(y − 2)

)
.

• We compute an approximate value
√

(0.03)2 + (2.89)2 with the help of the second order

Taylor polynomial. We choose (x0, y0) = (0, 3) and we use notation f(x, y) =
√
x2 + y2.

We have ∂f
∂x = x√

x2+y2
, ∂f
∂y = y√

x2+y2
, ∂2f
∂x2 = y2

(x2+y2)3/2
, ∂2f
∂y2 = x2

(x2+y2)3/2
, ∂2f
∂x∂y =

−xy
(x2+y2)3/2

. We deduce that T2 at (0, 3) is

T2(x, y) = 3 + (y − 3) +
1

6
x2

We get T2(0.03, 2.89) = 3 + (−0.11) + 1
60.0009 = 2.89015.

3.8 Implicit functions

Consider a set
{(x, y) ∈ R2, x2 + y2 = 1}

The equation x2 + y2 = 1 defines two function y1(x) and y2(x) where

x

y
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y1(x) =
√

1− x2, Dom y1(x) = [−1, 1],

y2(x) = −
√

1− x2, Dom y2(x).

What if it is impossible to express y? Consider an equation

f(x, y) = 0.

What assumptions should be imposed in order to get uniquely defined function y(x)?

Theorem 3.2. Let f : R2 → R and (x0, y0) ∈ R2 be given. If

i) f ∈ Ck for some k ∈ N,

ii) f(x0, y0) = 0,

iii) ∂f
∂y (x0, y0) 6= 0,

Then there is a uniquely determined function y(x) of class Ck on a neighborhood of point x0 such
that f(x, y(x)) = 0 (precisely, there is ε > 0 and a function y(x) defined on (x0 − ε, x0 + ε) such
that f(x, y(x)) = 0.

Example Consider an equation

x3 + y3 − 3xy − 3 = 0.

Is there a function y(x) determined by the given equation on the neighborhood of a point (1, 2)?
According to the previous theorem, we have to verify three assumptions:
1, the function f(x, y) = x3 + y3 − 3xy − 3 should belong (at least) to C1. That is true since
f(x, y) is a polynomial.
2, f(1, 2) should be equal to zero (or, equivalently, the given equation should be satisfied at the
given point). This is also true.
3, ∂f

∂y = 3y2 − 3x and therefore ∂f
∂y (1, 2) = −3 6= 0 and the last assumption is also true.

As a result, there is a function y(x) uniquely determined by the given equation in some neigh-
borhood of point x = 1, y = 2.

Note that the last assumption in the implicit function theorem cannot be omited. Consider the
first equation

x2 + y2 = 1

and let decide whether there is a function y(x) given by that equation at the point (1, 0). Ac-
cording to the picture, it is impossible (recall the vertical line test). The theorem may not be
applied. Take f(x, y) = x2 + y2 − 1. We have

∂f

∂y
= 2y,

∂f

∂y
(1, 0) = 0

and the third assumption is not fulfilled.
Or another example, consider a set

{(x, y) ∈ R2, x2 − y2 = 0}.

Is this set a graph of some function around a point (0, 0)? Once again, we have f(x, y) = x2−y2,
∂f
∂y = −2y and the last assumption of the implicit function theorem is not fulfilled.

39



Further analysis of the implicitly given function
In order to examine further qualitative properties of the given function we have to compute
derivatives at the given points. The easiest method is to differentiate the given equation with
respect to x (and to assume that y is in fact a function of x).
Example: Consider an equation

e2x + ey + x+ 2y − 2 = 0.

This defines on a neighborhood of (0, 0) a function y(x). Indeed, let f(x, y) = e2x+ey+x+2y−2.
Then f is of class Ck for every k ∈ N, f(0, 0) = 0 and ∂f

∂y = ey + 2 which yields ∂f
∂y (0, 0) = 3 6= 0.

Let compute y′′′(0) (note that the third derivative exists as f ∈ C3).
Let differentiate the equation with respect to x. We have

2e2x + eyy′ + 1 + 2y′ = 0

and we plug here x = 0 and y = 0 in order to get

2 + y′(0) + 1 + 2y′(0) = 0

which yields y′(0) = −1.
We differentiate once again with respect to x to get

4e2x + eyy′2 + eyy′′ + 2y′′ = 0

and we plug here x = 0, y = 0 and y′ = −1. We get

4 + 1 + 3y′′(0) = 0

yielding y′′(0) = − 5
3 . We differentiate the equation for the third time in order to get

8e2x + eyy′3 + ey2y′y′′ + eyy′y′′ + eyy′′′ + 2y′′′ = 0

and once again we plug there x = 0, y = 0, y′ = −1 and y′′ = − 5
3 . We get

8− 1 +
10

3
+

5

3
+ 3y′′′ = 0

which gives
y′′′(0) = −4.

In particular, we may write

0 =
∂f(x, y(x))

∂x
=
∂f(x, y)

∂x
+
∂f(x, y)

∂y

∂y

∂x

which gives

y′(x0) = −
∂f
∂x (x0, y0)
∂f
∂y (x0, y0)

.
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3.9 Extremes

Similarly to the one-dimensional case, we talk about local and global extremes.

Definition 3.18. Let f : M ⊂ Rn → R. We say that f attains a local maximum at a point
x0 ∈M0 if there is r > 0 such that f(x0) ≥ f(x) for all x ∈ Br(x0).
We say that f attains a local minimum at a point x0 ∈M0 if there is r > 0 such that f(x0) ≤ f(x)
for all x ∈ Br(x0).

Definition 3.19. Let f : M ⊂ Rn → R. We say that f attains its maximum on M at a point
x0 ∈ M if f(x0) ≥ f(x) for all x ∈ M . Similarly, f attains its minimum on M at a point
x0 ∈M if f(x0) ≤ f(x) for all x ∈M .

3.9.1 Local extremes

Assume f ∈ C1. Let f has a local extrem at (x0, y0). Then g(x) = f(x, y0) has also a local
extreme at x0 and, therefore, g′(x0) = 0. Similarly, h(y) = f(x0, y) has a local extreme at y0
and thus h′(y0) = 0. This leads to the following observation.

Observation 3.6. Let f ∈ C1 have a local extreme at x0. Then ∇f(x0) = 0.

Definition 3.20. A point x0 ∈ Dom f such that ∇f(x0) = 0 is called a stationary point.

How to find all local extremes of given function?
Step 1: determine the stationary point.
Step 2: examine the possible extremes in the stationary point.
Reminder: in the one-dimensional case one has to treat the sign of the second derivative in order
to decide if there is an extreme in a stationary point.

Example Let find all stationary points of f(x, y) = x2− y2. We have ∇f(x, y) = (2x,−2y) and
therefore the only stationary point is (x0, y0) = (0, 0). Is there a maximum or minimum?

Observation 3.7. Let f ∈ C2 and let x0 be its stationary point. Then:

1. If ∇2f is positive definite, then f attains a local minimum at x0,

2. If ∇2f is negative definite, then f attains a local maximum at x0.

3. If ∇2f is indefinite, then f does not have an extreme at x0 (saddle point).

4. Otherwise, we do not know anything.

Example: Let go back to f(x, y) = x2−y2. We already know that (x0, y0) = (0, 0) is a stationary
point. We have

∇2f =

(
2 0
0 −2

)
.

Thus det∇2f(0, 0) = −4 and there is no extreme at (0, 0).

Another example Determine all local extremes of

f(x, y) = x3 + 3xy2 − 15x− 12y.

Step 1, stationary points:

∇f(x, y) = (3x2 + 3y2 − 15, 6xy − 12)
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and we stationary points are solutions to

3x2 + 3y2 − 15 = 0

6xy − 12 = 0

which is equivalent to

x2 + y2 − 5 = 0

xy = 2.

We deduce from the second equation that x and y are different from zero. The second equation
yields x = 2

y . We plug this into the first equation to deduce

4

y2
+ y2 − 5 = 0

which is equivalent to
y4 − 5y2 + 4 = 0.

We have y2 = 4, y2 = 1 and therefore there are four stationary points

A = (−1,−2), B = (1, 2), C = (2, 1), D = (−2,−1).

Step 2: We have

∇f =

(
6x 6y
6y 6x

)
Further,

∇2f(A) =

(
−6 −12
−12 −6

)
, det∇2f(A) = −108

and A is a saddle point.

∇2f(B) =

(
6 12
12 6

)
, det∇2f(B) = −108

and B is a saddle point.

∇2f(C) =

(
12 6
6 12

)
, det∇2f(C) = 108

and C is a point of a local minimum. The value of the local minimum is f(C) = −28.

∇2f(D) =

(
−12 −6
−6 −12

)
, det∇2f(D) = 108

and D is a point of a local maximum. The value of the local maximum is f(D) = 28.

Global extremes

Definition 3.21. A set M ⊂ Rn is bounded if there is r > 0 such that M ⊂ Br(0).

Observation 3.8. Let f : M ⊂ Rn 7→ R be continuous. Let M be a bounded and closed set.
Then there is x0 ∈M where f attains its minimum on M and there is x1 ∈M where M attains
its maximum.
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x

y

One-dimensional case, reminder
Consider this function: One has to consider separately the interior of M and the ’boundary’ of
M . Although the function whose graph is in the picture has two stationary points, just one of
them is a point of a global extreme. The point of the global minimum is on the edge of M .

Boundary in the two dimensional case might be a bit complicated. In order to find extremes
here, we use the Lagrange multipliers method.

Theorem 3.3. Let f : Dom f ⊂ Rn → R be of class C1 and let it be defined on the neighborhood
of a set M which is given as

M = {x ∈ Rn, g(x) = 0}

for some function g ∈ C1. Let ∇g 6= 0. If there is an extreme of f with respect to the set M
then there exists λ ∈ R such that

∇f + λ∇g = 0.

Example We show how to determine a maximum and minimum of f(x, y) = −y2 +x2 + 4
3x

3 on
a set M = {(x, y) ∈ R2, x2 + y2 = 4}.
The first question is whether there is a maximum and minimum. Our first claim is that the set
M is closed. Why? Recall Observation 3.1. We define g(x, y) = x2 + y2 − 4 and then the set M
is g−1({0}) and since {0} ⊂ R2 is a closed set, we deduce that M is also closed. Further, M is
bounded since M ⊂ B3(0, 0). Therefore, according to the very first observation of this talk there
has to be a maximum and minimum of f on M .
Further, it holds that ∇g 6= 0 for every (x, y) 6= (0, 0). Note that (0, 0) /∈ M and thus we may
use the Lagrange multipliers. We have

∇f(x, y) = (2x+ 4x2,−2y), ∇g(x, y) = (2x, 2y).

We end up with a system

2x+ 4x2 + 2λx = 0

−2y + 2λy = 0

x2 + y2 = 4.

We deduce from the second equation that y(2λ− 2) = 0 and we get that either y = 0 or λ = 1.
Consider first the case y = 0. Then the last equation yields x2 = 4 and therefore x = ±2. We
get two ’stationary’ points

A = (2, 0), B = (−2, 0).
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Next, assume λ = 1. The first equation then yields

4x+ 4x2 = 0

which gives x = 0 or x = −1.
Let x = 0. The last equation is then y2 = 4 and we get y = ±2 and another two stationary
points

C = (0, 2), D = (0,−2).

Finally, let x = −1. Then we get y2 = 3 and y = ±3 and we deduce another two stationary
points

E = (−1,
√

3), D = (−1,−
√

3).

We have f(A) = 44
3 , f(B) = − 20

3 , f(C) = −4, f(D) = −4, f(E) = − 10
3 and f(F ) = − 10

3 . We
deduce that the maximum is attained at the point (2, 0) and its value is 44

3 , the minimum is
attained at the point (−2, 0) and its value is − 20

3 .

Example We find extremes of f(x, y) = x2+y2−12x+16y on a set M = {(x, y) ⊂ R2, x2+y2 ≤
25, x ≥ 0}.

x

y

M1M2

M3

M4

M4

We dismantle the set into four pieces

M1 = {(x, y) ∈ R2, x2 + y2 < 25, x > 0},
M2 = {(x, y) ∈ R2, x2 + y2 < 25, x = 0},
M3 = {(x, y) ∈ R2, x2 + y2 = 25, x > 0},
M4 = {(x, y) ∈ R2, x2 + y2 = 25, x = 0}.

and we takcle each subset separately:
- Stationary points in M1 = {(x, y) ∈ R2, x2 + y2 < 25, x > 0}:
We solve ∇f = 0 which is

2x− 12 = 0

2y + 16 = 0
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Therefore the stationary point is (6,−8). However, 62 + (−8)2 = 100 > 25 and this point does
not belong to M1.
- Stationary points in M2 = {(x, y) ∈ R2, x2 + y2 < 25, x = 0}:
We are going to consider a function f(x, y) on line x = 0. Therefore it is enough to examine
function f(0, y) =: h(y). We have

h(y) = y2 + 16y

and therefore h′(y) = 2y + 16. The resulting stationary point is x = 0, y = −8. However,
(−8)2 > 25 and the point (0,−8) does not belong to M2.
- Stationary points in M3 = {(x, y) ∈ R2, x2 + y2 = 25, x = 0}:
There is a constraint g(x, y) = x2 + y2 − 25. We have ∇g = (2x, 2y) and we have ∇g 6= 0 for
every (x, y) ∈M3. The system ∇f + λ∇g = 0 complemented with g = 0 has form

2x− 12 + 2xλ = 0

2y + 16 + 2yλ = 0

x2 + y2 = 25.

We may deduce that y 6= 0 (otherwise the second equation cannot be true) and λ 6= 0 (otherwise
x = 6, y = −8 and the last equation is not fulfilled. The first and second equation might be
rewritten as

xλ = 6− x
yλ = −8− y

and we divide the first equation by the second to get

λx

λy
=

6− x
−8− y

.

This yields
x

y
=
x− 6

8 + y

and
8x+ xy = xy − 6y

and therefore

y = −4

3
x.

We plug this into the last equation (x2 + y2 = 25) to get

x2 +
16

9
x2 = 25

which yields x = ±3. Therefore we have two stationary points (−3, 4) and (3,−4), however, the
first one does not belong to M3. So we take into consideration only A = (3,−4).
- Stationary points in M4 = {(x, y) ∈ R2, x2 + y2 = 25, x = 0}: This set consists only of two
points. Indeed, let both equations holds at once. Then necessarily

y2 = 25

and we have two points B = (0, 5) and C = (0,−5). These two points have to be considered as
there might appear global extremes (although these points are not stationary).
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- Final evaluation: We have just three points where the extremes might be attained:
A = (3,−4), B = (0, 5) and C = (0,−5). We have

f(A) = −75

f(B) = 105

f(C) = −55.

We deduce that the minimum of f on set M is attained at the point (3,−4) and its value is −75,
the maximum of f on set M is attained at point (0, 5) and its value is 105. Next we present just

x

y
B, maximum, f(B) = 105

A, minimum, f(A) = −75

slight modification for two constraints

Theorem 3.4. Let f : Dom f ⊂ Rn → R be of class C1 and let it be defined on the neighborhood
of a set M which is given as

M = {x ∈ Rn, g(x) = 0, h(x) = 0}

for some functions g, h ∈ C1. Let ∇g 6= 0 and ∇h 6= 0. If there is an extreme of f with respect
to the set M then there exist λ, µ ∈ R such that

∇f + λ∇g + µ∇h = 0.

The least square method
We will solve the following exercise: Assume that the cost of a car (of one given type) depends
linearly on its age, i.e.,

y = ax+ b, a, b ∈ R,

where y is the price of a car and x is its age.
Our aim now is to determine this function (constants a and b) from the given sets of data. Below
we have a table of particular cars (their price does not follow strictly the above rule since the
price come from the free market)

x 2 3 3 3 4 4 5 5 6
y 28.7 24.8 26.0 30.5 23.8 24.6 23.8 20.4 22.1
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To find the line which fits best to the given data, we use the least squares method. This
means that we are going to minimize the ’distance’ between the line ax+ b and the given data.
We define such distance as sum of squares:

x

y (x1, y1)

(x1, ax1 + b)

|y1 − ax1 − b|

|y1 − ax1 − b|2 + |y2 − ax2 − b|2 + . . .+ |yn − axn − b|2 =
n∑
i=1

|yi − axi − b|2.

This sum of squares in infact a function f of variables a and b of the form

f(a, b) =

n∑
i=1

(yi − axi − b)2

and we are going to minimize this sum of squares. We compute the partial derivative

∂f

∂a
= −2

n∑
i=1

(yi − axi − b)xi,
∂f

∂b
= −2

n∑
i=1

(yi − axi − b).

and we deduce that the stationary point of this function has to fulfill

n∑
i=1

(yi − axi − b)xi = 0

n∑
i=1

(yi − axi − b) = 0.

Recall that unknowns are a and b. We reformulate this into(
n∑
i=1

x2i

)
a+

(
n∑
i=1

xi

)
b =

n∑
i=1

xiyi(
n∑
i=1

xi

)
a+ nb =

n∑
i=1

yi.

Recall our example

x 2 3 3 3 4 4 5 5 6
y 28.7 24.8 26.0 30.5 23.8 24.6 23.8 20.4 22.1
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where we have

n = 9,

9∑
i=1

xi = 35,

9∑
i=1

x2i = 149,

9∑
i=1

yi = 224.7,

9∑
i=1

xiyi = 848.5.

We and up with equation

149a+ 35b = 848.5

35a+ 9b = 224.7

which has (approximate) solution

a = −2.02, b = 32.8.

Thus, the desired line has equation

y = −2.02x+ 32.8

x

y

4 Systems of ODEs

4.1 Introduction

Problem:

• Two large tanks, each holding 24 liters of a brine solution, are interconnected by pipes.
Fresh water flows into tank A at a rate of 6 L/min, and fluid is drained out of tank B at
the same rate; also 8 L/min of fluid are pumped from tank A to tank B, and 2 L/min from
tank B to tank A. The liquids inside each tank are kept well stirred so that each mixture
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is homogeneous. If, initially, the brine solution in tank A contains x0 kg of salt and that
in tank B initially contains y0 kg of salt, determine the mass of salt in each tank at time
t > 0.

Let denote:
amount of salt in the first tank: x
amount of salt in the second tank: y
salt flowing out of the first tank per one minute: x

248
salt flowing out of the second tank per one minute: y

242 + y
246

salt flowing into the first tank per one minute: y
242

salt flowing into the second tank per one minute: x
248

We arrive at the system

x′ = −1

3
x+

1

12
y

y′ =
1

3
x− 1

3
y

which can be rewritten as (
x′

y′

)
=

(
− 1

3
1
12

1
3 − 1

3

)(
x
y

)
.

This is in particular a system of first-order linear equations.

In what follows, we will tackle a system of ODEs of the form4

x′(t) = Ax(t) + b(t) (4)

where x(t) = (x1(t), . . . , xn(t))T and b(t) = (b1(t), . . . , bn(t))T are n−dimensional vectors and A
is an n by n square matrix.

Definition 4.1. The set of functions defined on R and solving (4) is called a general solution.
One of this function is called a particular solution.

We emphasize that higher order linear differential equations with constant coefficients might
be rewritten into a system of first order linear equations. Indeed, consider

y′′ + ky′ +my = 0.

We denote x = y′ and then it holds that x′ = −kx−my and the above system might be rewritten
as

x′ = −kx−my
y′ = x

Theorem 4.1. Assume A is a constant n by n matrix and let x1, . . . ,xn be n linearly independent
solutions to the homogeneous system

x′(t) = Ax(t) (5)

4Hereinafter, we use the boldface letters to denote the vector in a column form, i.e.,

x =

x1

...
xn

 .
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on the interval I. Then every solution to (5) on I can be expressed in the form

x(t) = c1x1(t) + . . .+ cnxn(t),

where c1, . . . , cn are real constants.

Definition 4.2. A set of solutions {x1, . . . ,xn} that are linearly independent is called a funda-
mental solution set for (5).

Theorem 4.2. If xp is a particular solution to the nonhomogeneous system

x′(t) = Ax(t) + b(t) (6)

on the interval I and {x1, . . . ,xn} is a fundamental solution set on I for the corresponding
homogeneous system x′(t) = Ax(t), then every solution to (6) on I can be expressed in the form

x(t) = xp(t) + c1x1(t) + . . .+ cnxn(t),

where c1, . . . , cn are real constants.

Proof is left as an exercise for interested readers.

The above theorem yields an approach to solving linear systems of the form x′ = Ax + b.
Namely, we have to perform the following two steps:

1. Find a fundamental solution set for the corresponding homogeneous system x′ = Ax.

2. Find one particular solution to the non-homogeneous system.

Then, the general solution can be written as a sum of outcomes of the previous two steps. The
forthcoming

4.2 Homogeneous systems with constant coefficients

We are going to solve
x′ = Ax (7)

Assume (and that is something usual in the case of linear system with constant coefficients) that
the solution is of the form

x(t) = eλtv

where λ ∈ R and v is an n−dimensional vector constant in t. We have

x′(t) = λeλtv

and once we plug this into (7), we deduce

λeλtv = Aeλtv.

We may divide by eλt to deduce
λv −Av = 0.

The above equation has a non-trivial solution only if λ is an eigenvalue. In such case, v is the
corresponding eigenvector.

Example
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• Let try to solve the initial value problem given at the beginning of this lesson, i.e.,

x′ =

(
− 1

3
1
12

1
3 − 1

3

)
x, x(0) =

(
x0
y0

)
.

To compute the eigenvalues of A =

(
− 1

3
1
12

1
3 − 1

3

)
we have to compute a determinant

det(A− λI) = det

(
− 1

3 − λ
1
12

1
3 − 1

3 − λ

)
= λ2 +

2

3
λ+

1

12
.

Therefore, the eigenvalues are solutions to

λ2 +
2

3
λ+

1

12
= 0.

We get λ1 = − 1
2 and λ2 = − 1

6 .

Let take λ1. Then the corresponding eigenvector whould satisfy

(
1
6

1
12

1
3

1
6

)
v1 = 0 and this

can be solved by GEM as follows (
1
6

1
12

1
3

1
6

)
∼
(
1
6

1
12

)
.

The solution (one of many) is v1 =

(
−1
2

)
.

Similarly, for λ2 we have (
− 1

6
1
12

1
3 − 1

6

)
∼
(
− 1

6
1
12

)
and the second eigenvector is v2 =

(
1
2

)
.

The set of all solution (the general solution) is

x(t) = c1e
−1/2t

(
−1
2

)
+ c2e

−1/6t
(

1
2

)
.

In order to reach the initial condition we deduce that

x(0) = c1

(
−1
2

)
+ c2

(
1
2

)
and the constants c1 and c2 has to be determined from the equation

−c1 + c2 = x0

2c1 + 2c2 = y0.

What if the eigenvalues are not real? And what if the eigenvalues are not distinct? (the char-
acteristic polynomial has a double (triple, etc.) root? That is the content of the two following
sections .
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4.2.1 Complex eigenvalues

Example

• Find a general solution of

x′ =

(
−1 2
−1 −3

)
x.

To find the eigenvalues we have to solve

0 = det

(
−1− λ 2
−1 −3− λ

)
= (1 + λ)(3 + λ) + 2 = λ2 + 4λ+ 5.

Therefore,

λ2 + 4λ+ 4 = −1

(λ+ 2)2 = −1

λ+ 2 = ±i.

We get λ1 = −2+i, λ2 = −2−i. (Similarly, we may deduce that λ1,2 = −4±
√
−4

2 ). Consider
λ1. We have (

1− i 2
−1 −1− i

)
∼
(
1− i 2

)
and the corresponding eigenvector is v1 = (2, i − 1). Here we note that λ2 = λ1 and
v2 = v1 where (α+ βi) = α− βi.
We obtain that one solution is of the form

x(t) = e(−2+i)t(2, i− 1) = e(−2+i)t ((2,−1) + i(0, 1)) .

Recall that
ea+bi = ea(cos b+ i sin b).

Therefore, we can write

x(t) = e−2t (cos t+ i sin t) ((2,−1) + i(0, 1))

= e−2t (cos t(2,−1)− sin t(0, 1)) + ie−2t (sin t(2,−1) + cos t(0, 1)) .

The real part represents one solution, the imaginary part the second one. Thus, the general
solution has a form

x(t) = c1e
−2t (cos t(2,−1)− sin t(0, 1)) + c2e

−2t (sin t(2,−1) + cos t(0, 1))

where c1 and c2 are arbitrary real constants. The same considerations lead to the following
theorem.

Theorem 4.3. If the real matrix A has complex eigenvalues α ± βi with corresponding eigen-
vectors a + ib, then the two linearly independent real vector solutions to x′ = Ax are

eαt cosβta− eαt sinβtb

eαt sinβta + eαt cosβtb.
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4.2.2 Double roots

Here we distinquish two cases: either there are two linearly independent eigenvectors correspond-
ing to one eigenvalue, or there is just one.
Examples

• Let solve
x′ = Ax

where A =

(
1 0
0 1

)
. The characteristic equation is

0 = det(A− λI) =

(
1− λ 0

0 1− λ

)
= (1− λ)2.

There is just one eigenvalue λ = 1 and the corresponding eigenvectors solves(
0 0
0 0

)(
v1
v2

)
= 0.

We deduce that there are two corresponding eigenvectors v1 = (1, 0) and v2 = (0, 1)
(actually, all linear combinations of these two are eigenvectors as well). Thus the generalized
solution is of the form

x(t) = c1e
t(1, 0) + c2e

t(0, 1)

for some c1, c2 ∈ R.

• Consider now

x′ =

1 0 0
1 3 0
0 1 1

x.

The characteristic equation is

0 = det

1− λ 0 0
1 3− λ 0
0 1 1− λ

 = (1− λ)2(3− λ)

and the eigenvalues are λ1 = 3 and λ2 = 1. Take λ1 = 3. Then−2 0 0
1 0 0
0 1 −2

 ∼ (1 0 0
0 1 −2

)
and the corresponding eigenvector is (0, 2, 1). Thus, the fundamental solution set contains
a function

x(t) = e3t(0, 2, 1).

Take λ2 = 1. Then 0 0 0
1 2 0
0 1 0

 ∼ (1 2 0
0 1 0

)
and the corresponding eigenvector is v1 = (0, 0, 1). Thus, the fundamental solution set
contains a function

x(t) = et(0, 0, 1).

But we need one additional function in the fundamental solution set. How to get it?
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Matrix exponential
The exponential function ex : R 7→ R can be defined as an infinite sum

ex = 1 + x+
x2

2
+
x3

6
+ . . . =

∞∑
n=0

xn

n!
.

Similarly, let A be a square matrix. Then we write

eAt = I +At+
A2t2

2
+
A3t3

6
+ . . .

It holds that(
eAt
)′

= 0 +A+A2t+
A3t2

2
+ . . . = A

(
I +At+

A2t2

2
+ . . .

)
= AeAt

and therefore the columns of the matrix eAt form the fundamental solution set of

x(t) = Ax.

This also means that every solution is of the form x(t) = eAtv where v is an arbitrary n−dimensional
vector.

Let v be an eigenvector. Then

eAtv = eλte(A−λt)v = eλt
(
Iv + t(A− λI)v +

t2

2
(A− λI)v + . . .

)
= eλtv

Let w is a generalized eigenvector (recall Definition 1.23). Then

(A− λI)2w = (A− λI)(A− λI)w = (A− λI)v = 0

and we deduce that

eAtw = eλte(A−λt)w = eλt
(
Iw + t(A− λI)w +

t2

2
(A− λI)w + . . .

)
= eλt(w + tv).

Back to our example: we have

x′ =

1 0 0
1 3 0
0 1 1

x.

We have already deduced that λ1 = 3 has corresponding eigenvector (0, 2, 1) and the double
root λ2 = 1 has a corresponding eigenvector v = (0, 0, 1). Now, we have to find a corresponding
generalized eigenvector w which satisfies0 0 0

1 2 0
0 1 0

w = v

and we use the Gauss elimination method to deduce0 0 0 | 0
1 2 0 | 0
0 1 0 | 1

 ∼ (1 2 0 | 0
0 1 0 | 1

)
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Solutions are of the form (−2, 1, 0) + r(0, 0, 1) for any r ∈ R. It is enough to choose one solution,
say (−2, 1, 0). According to our considerations, we deduce that one solution is of the form

x(t) = et((−2, 1, 0) + t(0, 0, 1)).

Thus, the generalized solution for the given problem is

x(t) = c1e
3t(0, 2, 1) + c2e

t(0, 0, 1) + c3e
t((−2, 1, 0) + t(0, 0, 1))

for some c1, c2, c3 ∈ R.

To summarize:

Observation 4.1. Let the real matrix A has an eigenvalue λ ∈ R which is a double root of
the characteristic equation. Let there be just one corresponding eigenvector v and let w be a
generalized eigenvector. Then the fundamental solution set contains the functions

eλtv, eλt (w + tv) .

4.3 Non-zero right hand side

This time we tackle the problem
x′(t) = Ax(t) + f(t)

where f(t) is a nonzero vector-valued function. We already know how to find all solution to the
corresponding homogeneous system

x′(t) = Ax(t).

4.3.1 Undetermined coefficients

Example

• Let solve

x′(t) =

 1 −2 2
−2 1 2
2 2 1

x(t) + t

 −9
0
−18

 .

First, let find all solutions to the corresponding homogeneous system. The characteristic
equation is

0 = det

1− λ −2 2
−2 1− λ 2
2 2 1− λ

 = (λ− 3)2(λ+ 3).

For λ1 = 3 we have −2 −2 2
−2 −2 2
2 2 −2

 ∼ (1 1 −1
)

and the corresponding eigenvectors are v1 = (1, 0, 1) and v2 = (0, 1, 1). For λ2 = −3 we
have  4 −2 2

−2 4 2
2 2 4

 ∼
 2 −1 1
−2 4 2
2 2 4

 ∼ (2 −1 1
0 3 3

)
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and the corresponding eigenvector is v3 = (1, 1,−1). All solutions to the homogeneous
problem have form

x(t) = e3t(c1(1, 0, 1) + c2(0, 1, 1)) + e−3tc3(1, 1,−1)

where c1, c2, c3 ∈ R.

Let find one particular solution to

x′(t) =

 1 −2 2
−2 1 2
2 2 1

x(t) + t

 −9
0
−18


We can assume that the solution is of the form x(t) = at + b where a and b are vectors
constant in time. Thus we have x′(t) = a and we plug this into the given equation in order
to deduce

a =

 1 −2 2
−2 1 2
2 2 1

 (at+ b) + t

 −9
0
−18


We compare coefficients in order to deduce

0 =

 1 −2 2
−2 1 2
2 2 1

a +

 −9
0
−18


and

a =

 1 −2 2
−2 1 2
2 2 1

b.

To find a we use the GEM as follows 1 −2 2 | 9
−2 1 2 | 0
2 2 1 | 18

 ∼
1 −2 2 | 9

0 −3 6 | 18
0 6 −3 | 0

 ∼
1 −2 2 | 9

0 −3 6 | 18
0 0 9 | 36


and we deduce that a = (5, 2, 4).
Next, we have 5

2
4

 =

 1 −2 2
−2 1 2
2 2 1

b

and we once again use the GEM to get 1 −2 2 | 5
−2 1 2 | 2
2 2 1 | 4

 ∼
1 −2 2 | 5

0 −3 6 | 12
0 6 −3 | −6

 ∼
1 −2 2 | 5

0 −3 6 | 12
0 0 9 | 18



and we have b =

1
0
2

. Thus, all solutions to the given equation are of the form

x(t) =

5
2
4

 t+

1
0
2

+ e3t

c1
1

0
1

+ c2

0
1
1

+ c3e
−3t

 1
1
−1

 .
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Observation 4.2. Let f(t) = erttmg where g is a constant vector. Then one solution is of the
form

xp(t) = ert
(
tm+sam+s + tm+s−1am+s−1 + . . .+ ta1 + a0

)
where ai are constant vectors and s is an appropriately chosen integer.

4.4 Systems in a plane

During this subsection we consider systems of the form

∂x

∂t
= f(x, y)

∂y

∂t
= g(x, y)

Note that this time, the system is not necessarily linear, however, it is autonomous – the right
hand side in t−independent.

Definition 4.3. If x(t) and y(t) is a solution pair to the above mentioned system for t in the
interval I, then a plot in the xy-plane of the parametrized curve (x(t), y(t)) for t in I, together
with arrows indicating its direction with increasing t, is said to be a trajectory of the system. In
such a context we call the xy-plane the phase plane.

Example no. 1:

x′ = −x
y′ = −2y

Recall that
∂y

∂x
=

∂y
∂t
∂x
∂t

=
−2y

−x
.

This yields y = cx2 and thus we get the picture as above. Note that, since y′(t) and x′(t) are
negative for x, y > 0, we get trajectories aiming to the origin. See picture above.
Example no. 2:

x′ = x

y′ = 2y

This time, the picture is the same as above with only one exception – the arrows aim away of
origin (see the picture below), try to justify why.

Definition 4.4. : A point (x0, y0) ∈ R2 where f(x0, y0) = g(x0, y0) = 0 is called a critical point
(or equilibrium point) of the given system. The corresponding solution x ≡ x0, y ≡ y0 is called
an equilibrium solution (or stationary solution).

Observation 4.3. Let x(t) and y(t) be a solution on [0,∞) to the given system (we assume f
and g are continuous). If the limits

lim
t→∞

x(t) = x0, lim
t→∞

y(t) = y0

exist and are finite, then (x0, y0) is a critical point of the system.
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x

y

x

y

Types of equilibrium points:

• Stable node (asymptotically stable)

• Unstable node

• Stable spiral (asymptotically stable)
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• Unstable spiral

• Saddle (unstable)

• Center (stable, but not asymptiotically)

Example: Find the critical points and sketch trajectories in the phase plane for

x′ = −y(y − 2)

y′ = (x− 2)(y − 2).

What is the behavior of the solutions starting from (3, 0), (5, 0) and (2, 3)?

Let consider a special case of a linear system in a plane, i.e.,

x′ = a11x+ a12y + b1

y′ = a21x+ a22y + b2

which might be shortened to
x′ = Ax + b

where x =

(
x
y

)
, b =

(
b1
b2

)
and

A =

(
a11 a12
a21 a22

)
.

In what follows, we assume that b = 0. This assumption will be commented later.
From what we know, we deduce that

• Let the eigenvalues λ1 and λ2 be real, distinct and both positive. Then (0, 0) is an unstable
node.

• Let the eigenvalues λ1 and λ2 be real, distinct and both negative. Then (0, 0) is a stable
node.

• Let the eigenvalues λ1 and λ2 be real and have oposite signs. Then (0, 0) is a saddle point.

• Let the eigenvalues λ1 and λ2 be equal. Then (0, 0) is either a proper node (stable or
unstable) or an improper node (stable or unstable).

• Let the eigenvalues be complex, i.e. λ12 = a± bi where a, b ∈ R. Then (0, 0) is a spiral. It
is a stable spiral if a < 0 and it is an unstable spiral if a > 0.

Example

• Find and classify the critical point of the linear system

x′ = 2x+ y − 3

y′ = −3x− 2y − 4.

The critical point satisfies

2x+ y − 3 = 0

−3x− 2y − 4 = 0
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which yields (x0, y0) = (10,−17). We introduce the new variables u = x−10 and v = y+17.
Clearly u′ = x′ and v′ = y′ and thus

u′ = 2u+ v

v′ = −3u− 2v.

and we use the theory for the homogeneous systems. The matrix(
2 1
−3 −2

)
has eigenvalues λ1 = 1 and λ2 = −1. The critical point (10,−17) is the saddle point and
it is an unstable equilibrium.

4.4.1 Almost linear systems

Definition 4.5. An almost linear system is a system of the form

x′ = a11x+ a12y + f(x, y)

y′ = a21x+ a22y + g(x, y)

Here we assume that f and g are just small perturbations. In particular,

lim√
x2+y2→0

f(x, y)√
x2 + y2

= 0, lim√
x2+y2→0

g(x, y)√
x2 + y2

= 0.

The system

x′ = Ax, A =

(
a11 a12
a21 a22

)
is called a corresponding linear system.

Note, that the origin is an equilibrium point of the almost linear system.

Theorem 4.4. The stability properties of the critical point at the origin for the almost linear
system are the same as the stability properties of the origin for the corresponding linear system
with one exception: When the eigenvalues are pure imaginary, the stability properties for the
almost linear system cannot be deduced from the corresponding linear system.

Competing species:
The population of two species x and y (independent on each other) might be governed by the
logistic equations

x′ = k1x(C1 − x) = k1C1x− k1x2 = a1x− b1x2

y′ = k2x(C2 − y) = a2y − b2y2

Now assume that both species compete for the same food. In such a case, the capacity C might
be exhausted by both x and y and therefore we assume

x′ = a1x− b1x2 − c1xy
y′ = a2y − b2y2 − c2xy
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Consider two competing species whose population is governed by

x′ = x(7− x− 2y) = 7x− x2 − 2xy

y′ = y(5− y − x) = 5y − y2 − xy.

There are four critical points: A = (0, 0), B = (0, 5), C = (7, 0), and D = (3, 2).
Take A. The appropriate linear system is

x′ = 7x

y′ = 5y.

The eigenvalues are 7 and 5 and therefore A is an unstable node.
Take B. We have to employ the change of coordinates u = x, v = y − 5. Thus the system is

rewritten as

u′ = −3u− u2 − 2uv

v′ = −5v − 5u− v2 − uv.

The appropriate linear system is

u′ = −3u

v′ = −5v − 5u

and the appropriate eigenvalues are both negative (−3 and −5). Consequently, B is a stable
node.

Let examine C. We use the change of coordinates u = x− 7, v = y. The system takes form

u′ = −7u+ 14v − u2 − 2uv

v′ = −2v − v2 − uv.

The eigenvalues of the respective linear system

u′ = −7u+ 14v

v′ = −2v

are both negative (−2 and −7) and the point C is a stable node.
Finally, we take u = x− 3 and v = y − 2 in order to handle D. The system is of the form

x′ = −3u− 6v − u2 − 2uv

y′ = −2u− 2v − uv − v2.

The appropriate linear system

x′ = −3u− 6v

y′ = −2u− 2v.

has two eigenvalues 1 and −6 and therefore D is a saddle.
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5 Difference equations

5.1 Linear difference equations with constant coefficients

This subsection is devoted to the study of difference equations. Namely, we are looking for an
unknown sequence {y(n)}∞n=1 which fulfills

y(n+ k) + p1y(n+ k − 1) + . . .+ pky(n) = an (8)

where an is some given right hand side and p1, . . . , pk ∈ R are given coefficients. Such equation
is called ’linear difference equation of order k’.

Example: Assume that we have to pay a mortgage 200 000 USD. The interest of this
mortgage is 0.1% per month and we pay monthly 1 000 USD. Let denote the sum we owe in the
n−th month by y(n). Clearly, y(0) = 200 000. Clearly,

y(n+ 1) = 1.001y(n)− 1 000.

This might be rewritten as
y(n+ 1)− 1.01y(n) = −1 000.

Note that the left hand side of (8) is a linear operator. We proceed similarly as in the case
of the linear differential equations with constant coefficients. First of all, we find all solutions to
the homogeneous case

y(n+ k) + p1y(n+ k − 1) + . . .+ pky(n) = 0

and then we find one particular solution to non-homogeneous equation. The sum of these two
outcomes gives the set of all solutions to the given problem.

The assumed solution to the homogeneous problem is y(n) = λn. Thus, the characteristic
equation is

λk + p1λk−1 + p2λk−2 + . . .+ pk = 0.

Theorem 5.1. Let {λj}kj=1 are real roots of the characteristic equation of multiplicity νk. Then
the fundamental system is

{nαλnj , j ∈ {1, . . . k}, α ∈ {1, . . . , νj − 1}}.

Let go back to the mortgage example. The appropriate homogeneous equation is

λ− 1.001 = 0

which yields λ = 1.001 and thus the fundamental system is {1.001n}. All solutions to this
homogeneous problem are of the form y(n) = c1.001n where c ∈ R is an arbitrary constant.

Special right hand side: Let P (n) be a polynomial. One solution y(n) of equation

L(y) = αnP (n)

is of the form
y(n) = nmαnQ(n)

where m = 0 if α is not a root of the characteristic equation and m equals the multiplicity of the
root α otherwise, and Q(n) is a polynomial of degree at most degP (n).

62



Finally, we are able to conclude the mortgage example. We need to find one solution to

y(n+ 1)− 1.001y(n) = −1 000.

The right hand side is of the special form, namely α ≡ 1 and P (n) = 1 000 is a polynomial of
degree 0. As a result, one of the solution is of the form

y(n) = Q(n)

where Q(n) = a ∈ R since it can be only 0 degree polynomial. Thus we obtain

a− 1.001a = −1 000

which yields a = 1 000 000. All solutions are of the form

y(n) = 1 000 000 + c1.001n

and since y(0) = 200 000 we deduce

y(n) = 1 000 000− 800 0001.001n.

Complex roots Let solve the equation

y(n+ 2)− 2y(n+ 1) + 2y(n) = 0. (9)

The characteristic polynomial is then of the form

λ2 − 2λ+ 2 = 0

and the solutions are
λ1,2 = 1± i.

In this case, we follow the following theorem:

Theorem 5.2. Let λ1,2 = a ± bi be roots of the characteristic equation. Then the appropriate
functions in the fundamental system are

rn cos (nθ) and rn sin (nθ)

where r =
√
a2 + b2 and θ ∈ [0, 2π) is such that a = r cos θ and b = r sin θ.

In our case, a = 1 and b = 1 and we get r =
√

2. Further, we deduce from

1 =
√

2 cos θ, 1 =
√

2 sin θ

that θ = π
4 . All solutions to (9) are of the form

y(n) = c1
√

2
n

cos
(nπ

4

)
+ c2
√

2
n

sin
(nπ

4

)
, c1, c2 ∈ R.
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5.2 Recurrence relations

Usually, sequences are given by explicit formula, for example a sequence an = 1
n is sequence

whose first few members are {1, 12 ,
1
3 ,

1
4 , . . .}.

Sequences might be given also by recurrence relation. For example:

an+1 = an + n+ 1, a1 = 1.

How to get an explicit formula from the recurrence relation? By guessing. First, we try to guess
the correct answer and then we verify our guess by induction. Recall that induction is a way
how to prove a claim of the form ∀n, V (n) and it consists of two steps:

• First we show V (1).

• Next we show that V (n)⇒ V (n+ 1) for all n ∈ N.

Let go back to
an+1 = an + n+ 1, a1 = 1.

The first few elements of this sequence are

1, 3, 6, 10, 15, . . .

We may deduce that the explicit formula might be

an =

(
n+ 1

2

)
.

Now it is enough to show that such defined an satisfies the given recurrence relation.
First, we have

a1 =

(
2
2

)
.

Next, we need to show that if an =

(
n+ 1

2

)
, then an+1 defined as an + n + 1 satisfies an+1 =(

n+ 2
2

)
. But we have

an + n+ 1 =

(
n+ 1

2

)
+

(
n+ 1

1

)
=

(
n+ 2

2

)
= an+1.

where we used the relation (
n
k

)
+

(
n

k + 1

)
=

(
n+ 1
k + 1

)
.

Thus we have just verified that the sequence fulfilling

an+1 = an + n+ 1, a1 = 1

is the sequence

an =

(
n+ 1

2

)
=
n(n+ 1)

2
.
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The above example yields another way how to solve the difference equations. In particular, the
given recurrence relation

an+1 = an + n+ 1

is actually a linear difference equation

y(n+ 1)− y(n) = n+ 1.

However, the above method is applicable also to nonlinear cases – try the following exercises:
Exercises:

• Find the formula for an if
an = nan−1, a0 = 1.

Prove the correctness of your answer.

• Find the formula for an if
an = a2n−1, a0 = 2

and prove its correctness.
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absolute convergence, 26
almost linear system, 60

basis, 6
boundary, 29
bounded set, 42

characteristic polynomial, 15
closed set, 28
closure, 29
continuous function, 32
contour line, 30
convergence serie, 23
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critical point, 57

derivative with respect to direction, 34
determinant, 13
differential, 36
dimension, 6
divergence serie, 23

echelon form, 8
eigenvalue, 15
eigenvector, 15
elementary transformation, 8
equilibrium point, 57
equilibrium solution, 57
extreme with respect to set, 41

function of multiple variables, 30
fundamental solution set, 50

Gauss elimination method, 9
general solution, 49
generalized eigenvector, 16
generators, 5
gradient, 34
graph of function, 30

higher order partial derivatives, 35

identity matrix, 11
indefinite terms, 20
interior, 29
inverse matrix, 11
isolated point, 29

Lagrange multipliers, 43
leading coefficient, 8
least square method, 46
limit of a function, 32
limit of sequence, 19
limit point, 29
linear combination, 4
linear span, 5
linearly dependent vectors, 5
linearly independent vectors, 5
local extreme, 41
local maximum, 41
local minimum, 41

matrix, 7
monotone sequence, 18

negative-definite matrix, 17

open ball, 28
open set, 28

partial derivatives, 34
partial sum, 23
particular solution, 49
phase plane, 57
pivot, 8
positive-definite matrix, 17

quadratic form, 17

rank, 8
regular matrix, 12

sequence, 18
singular matrix, 12
square matrix, 11
stationary point, 41
stationary solution, 57
subsequence, 21
subspace, 4
symmetric matrix, 8

Taylor polynomial, 37
trajectory, 57

vector, 3
vector space, 3
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