
UCT Mathematics
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1 Numbers, sets, and functions

1.1 Logic

A proposition is such sentence that we can decide about its correctness, i.e., whether it is true
or false. For example:
– ’three plus four’ is not a proposition,
– ’three plus four is six’ is a proposition (obviously wrong). This proposition is atomic (ele-
mentary) – it cannot be decomposed. – ’three plus four is seven and one plus one is three’ is
a proposition as well, however, this proposition is not atomic since it can be decomposed into
a proposition ’three plus four is seven’, into another proposition ’one plus one is three’ and a
connective ’and’.

How to make non-atomic propositions
Propositions may be joined into new proposition by using logical connectives:

� conjunction - and - &: ’three plus four is seven and one plus one is three’ is an example of a
conjunction of two propositions, proposition A =’three plus four is seven’ and proposition
B =’one plus one is three’. It may be written as A&B. The whole conjunction is false.
Nevertheless, if we replace B by C =’one plus one is two’, then A&C will be true – the
conjunction is true only if both propositions are true.

� disjunction - or - ∨: Using the same notation as above, we understand A ∨ B as ’three
plus four is seven or one plus one is three’. This time, the proposition A ∨B is true – the
disjunction is true once there is at least one true proposition.

� implication - if ... then - ⇒: ’if sun shines then it is hot’ – here we have two elementary
propositions D =’sun shines’ and E =’it is hot’. The implication D ⇒ E is false only in
case the sun shines and, simultaneously, it is not hot. The implication is true in all other
cases.

� equivalence - if and only if - ⇔

� negation - it is not true that ... - ¬: ’it is not true that sun shines’, or, with the above
notation, ¬D. Note that this particular negation might be abbreviated as ’the sun does
not shine’. It holds that ¬¬A = A.

The summary is provided by the following table

A B A&B A ∨B A ⇒ B A ⇔ B ¬A
true true true true true true false
true false false true false false false
false true false true true false true
false false false false true true true

- Some rules (including the De Morgan laws):
A ⇒ B is the same as (¬A) ∨B
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¬(A ∨B) is the same as (¬A)&(¬B)
¬(A&B) is the same as (̸= A) ∨ (¬B)
as a result of the previous lines we deduce that ¬(A ⇒ B) is A&¬B.

Quantifiers
Existential quantifier ∃ is read as ’there is’ or ’there exists’. For example, ’there exists a natural
number n such that 2n = 5’ can be written by use of symbols as ∃n ∈ N, 2n = 5 (here N denotes
a set of all natural numbers – see the next subsection). We just remark that this statement is
false.
Universal quantifier ∀ is read as ’for all’ or ’every’. For example ’every unicorn can breath under
water’. The first two words of this sentence might be shortened to ∀u ∈ U where U denotes a
set of all unicorns. Let us remark that the above statement is true – every proposition is true
assuming it tackles all individuals from an empty set, here we tacitly assume that unicorns do
not exist.
Example

� ∀x ∈ N ∃y ∈ N 2y = x reads as ’For every natural number x there is a natural number y
such that 2y = x. This claim is obviously wrong as taking x = 5 would yield y = 2.5 which
is clearly not natural.

� ∀x ∈ X,
√
x ∈ R reads as ’For every real number x, its square root is real’ or, in a better

way, ’The square root of every real number is real’. Obviously, this claim is false as the
square root of a negative number is not real.

� ∃x ∈ N 2x = 6 reads as ’there is a natural number x such that 2x = 6’. This sentence is
valid since the natural number x = 3 fits into the claim.

� ∀x ∈ R x2 ∈ R means ’The square of every real number is real’. This claim is true.

1.2 Sets

The sets are given by one of the following ways:

� list of elements: M = {1, 2, 3, 4} is a set containing numbers 1, 2, 3 and 4.

� a condition (or more conditions): M = {w, w is a word containing exactly five letters} or
M = {w, w is a word containing exactly five letters, w is a noun}.

� semantic form: M is a set of first five even natural numbers.

Definition 1.1. Let X and Y be two sets. By X ∪ Y we denote a union of sets X and Y which
is a set containing elements of both sets, i.e.,

X ∪ Y = {x, (x ∈ X) ∨ (x ∈ Y )}.

By X ∩ Y we denote an intersection of sets X and Y which is a set consisting of elements
belonging simultaneously to both sets, i.e.,

X ∩ Y = {x, (x ∈ X)&(x ∈ Y )}.

The Cartesian product X × Y is a set of all ordered couples such that the first component
belongs to X and the second to Y . Namely,

X × Y = {⟨x, y⟩, (x ∈ X)&(y ∈ Y )}.
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We say that X is a subset of Y if every element of X is in Y . The notation is X ⊂ Y and
we may write

X ⊂ Y ⇔ ((x ∈ X) ⇒ (x ∈ Y )).

Sets X and Y are equal if X ⊂ Y and simultaneously Y ⊂ X.
Let X ⊂ Y . By Y \X we understand a set of all elements in Y which are not in X, i.e.,

Y \X = {(y ∈ Y )&(y /∈ X)}.

Hereinafter, the empty set is denoted by ∅.

Example:

� Let X = {1, 2, 3} and Y = {2, 3, 4}. Then X ∩ Y = {2, 3}, X ∪ Y = {1, 2, 3, 4}, X \ {1} =
{2, 3} and it holds that (X \ {1}) ⊂ Y . Further,

X × Y = {⟨1, 2⟩, ⟨1, 3⟩, ⟨1, 4⟩, ⟨2, 2⟩, ⟨2, 3⟩, ⟨2, 4⟩, ⟨3, 2⟩, ⟨3, 3⟩, ⟨3, 4⟩}.

1.3 Numbers

We will use the following notation for numbers: N stands for natural numbers, Z denotes integers,
Q is a set of all rational numbers and R denotes the set of all real numbers. Namely:

N = {1, 2, . . .}

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}

Q =

{
. . . ,

1

2
,
−3

2
,
5

2
, . . .

}
Q is a field. Namely, there are two operations + and · fulfilling

� ∀x, y, z ∈ Q, x+ (y + z) = (x+ y) + z, x · (y · z) = (x · y) · z (associativity)

� ∀x, y ∈ Q, x+ y = y + x, x · y = y · x (commutativity)

� ∃0 ∈ Q, ∀x ∈ Q, x+ 0 = x (there is null)

� ∃1 ∈ Q, ∀x ∈ Q, x · 1 = x (there is one)

� ∀x ∈ Q, ∃ − x ∈ Q, x+ (−x) = 0 (there is an opposite number)

� ∀x ∈ Q \ {0}, ∃x−1, x · x−1 = 1 (there is an inverse number)

� ∀x, y, z ∈ Q, x · (y + z) = x · y + x · z (distributivity)

The set R is also a field, which is totally ordered and it containes supremum and infimum of
every of its subset. Therefore, to properly states basic properties of all real numbers R we first
define a totally ordered set as well as supremum and infimum:

Definition 1.2. We say that a set X is totally ordered if there is a relation ≤ fulfilling

� ∀x, y ∈ X, (x ≤ y) ∨ (y ≤ x).

� ∀x, y ∈ X, ((x ≤ y)&(y ≤ x)) ⇒ x = y.
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� ∀x, y, z ∈ X, ((x ≤ y)&(y ≤ z)) ⇒ (x ≤ z).

Further, we define relation < as x < y ⇔ (x ≤ y&x ̸= y).

R is a totally ordered field which, moreover, satisfies

� ∀x, y, z ∈ R, (x < y) ⇒ (x+ z < y + z)

� ∀x, y ∈ R and z > 0, (x < y) ⇒ (z · x < z · y)

Remark 1.1. Simply, x ≥ y is the same as y ≤ x and x > y is the same as y < x.

Definition 1.3. Let A ⊂ R. We define a supremum (or least upper bound, abbreviated as LUB)
of A, supA, as a number M ∈ R fulfilling

∀x ∈ A, (x ≤ M)&(∀ε > 0,∃x ∈ A, x+ ε > M)

Similarly, we define infimum (or greatest lower bound, abbreviated as GLB) of A, inf A, as a
number m ∈ R fulfilling

∀x ∈ A, (x ≥ m)&(∀ε > 0,∃x ∈ A, x− ε < m).

Example:

� The supremum of M =
{

1
n , n ∈ N

}
is clearly 1: It is contained in M and, simultaneously,

it is greater or equal to all the members of M . Further, infM = 0 because every element
of M is greater than zero, on the other hand, for every ε > 0 there is an element x ∈ M
fulfilling x < 0 + ε. Indeed,

1

n
< ε

1

ε
< n

and thus taking n = ⌈ 1
ε⌉+ 1 gives the demanded element.

Define inf ∅ = +∞ and sup ∅ = −∞. Previous definition allows to state the last property of
real numbers which is: ∀A ⊂ R, ∃M ∈ R∗, M = supA. That is the way how we get the extended
real numbers – denoted by R∗ – since we add also numbers +∞ and −∞ – however that was not
intended. In order to get the demanded field of numbers we remove +∞ and −∞ as the very
last step. Thus R = R∗ \ {+∞,−∞}.

It is worth to mention that rational numbers do not posses this last property. Namely,
√
2 is

real number, since it can be defined as
√
2 = sup{x, x2 ≤ 2}.

On the other hand,
√
2 is not a rational number. Indeed, let

√
2 = p

q for some p ∈ Z and

q ∈ N such that p and q do not have a common divisor (and thus it cannot be simplified). Then
(pq )

2 = 2 which implies p2 = 2q2 and 2 is a divisor of p which can be written as p = 2l for some

l ∈ Z. We put it into the last equality to get 4l2 = 2q2 yielding 2l2 = q2 and 2 is a divisor of q.
Thus p and q have a common divisor 2 which is a contradiction with our assumption.

Definition 1.4. Let a, b ∈ R∗, a < b. An open interval (a, b) is defined as (a, b) = {x ∈ R, a <
x < b}. Let a, b ∈ R, a < b. A closed interval [a, b] is defined as [a, b] = {x ∈ R, a ≤ x ≤ b}.
Further, we define half-open interval as follows: Let a ∈ R and b ∈ R∗ be such that a < b. Then
[a, b) = {x ∈ R, a ≤ x < b}. Let a ∈ R∗ and b ∈ R. Then (a, b] = {x ∈ R, a < x ≤ b}.
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1.4 Complex numbers

Definition 1.5. Let state i =
√
−1. A complex number z is such number that there exists

a, b ∈ R and z = a+ bi. The field of complex numbers is denoted by C.

Operations over C are as follows. First, let z1 = a1 + b1i, z2 = a2 + b2i then

� z1 + z2 = a1 + a2 + (b1 + b2)i

� z1z2 = a1a2 − b1b2 + (a1b2 + b1a2)i

� z1 = a1 − b1i, |z1|2 = z1z1

�
z1
z2

= z1z2

|z2|2

Examples:

� i2 = −1, i3 = −i, i29 = i, i−8 = −1

� 2 + 3i+ 3− 2i = 5 + i

� (1− 2i)(2 + i) = 4− 3i

�
3−i
4+i =

(3−i)(4−i)
(4+i)(4−i) = 11−7i

17

� |3 + 4i| = 5

1.5 Few words about proofs

A mathematical theorem (lemma, observation) are usually of the form A ⇒ B where A denotes
the assumptions of a theorem and B denotes the claims of the theorem. The methods of proof
of such implication is the following:

� Direct. To prove A ⇒ B, we present a set of implications which starts from A and end up
in B.
Example: Let a > 1, then a2 > 1. Proof: (a > 1) ⇒ (a > 0) ⇒ (a2 > a > 1) ⇒ (a2 > 1).

� Indirect. Rather than proving A ⇒ B, we prove ¬B ⇒ ¬A.
Example: Let a, b ∈ R and let ab = 0. Then either a = 0 or b = 0. Proof: we show that
(a ̸= 0)&(b ̸= 0) implies ab ̸= 0. Let a > 0 and b > 0. Then ab > 0. In other cases we
proceed similarly, for example if a < 0 and b > 0, then we use the previous argument for
−a and b.

� Contradiction. Instead of proving A ⇒ B, we show that A&¬B yields contradiction and
thus cannot occur. For example a claim

√
2 /∈ Q which was presented in the previous

subsection.

� Mathematical Induction – special kind of proof, the rest of this subsection is devoted to
this.

Mathematical induction
is a method how to prove an assertion V (n) for every n ∈ N. (For example, let n ∈ N and let

V (n) be ’it holds that
∑n

i=1 i =
n(n+1)

2 ’.)
Math induction helps to prove that V (n) holds for every n ∈ N. It consists of two steps:
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1. V (1) holds.

2. for every k ∈ N it holds that V (k) ⇒ V (k + 1).

Example:

We prove that
∑n

i=1 i =
n(n+1)

2 . First, we show the validity of this equality for n = 1. In this
case we have

L = 1 =
1 · 2
2

= R.

To verify the second step, assume that for an arbitrary k ∈ N the assertion holds true. We intent
to prove that (

k∑
i=1

i =
k(k + 1)

2

)
⇒

(
k+1∑
i=1

i =
(k + 1)(k + 2)

2

)
To prove the last equality, let start with its left hand side and show it is equal to the right hand
side (by using the assumption). We have

L =

k+1∑
i=1

i =

k∑
i=1

i+ k + 1 =
k(k + 1)

2
+ k + 1 =

k(k + 1)

2
+

2(k + 1)

2
=

(k + 2)(k + 1)

2
= R.

2 Linear Algebra

2.1 Vector spaces

Definition 2.1. A set V endowed with operations + (sum) and . (multiplication by a real num-
ber) which satisfy u + v ∈ V for all u, v ∈ V and α.u ∈ V for all u ∈ V and α ∈ R is called
vector space (or a linear space) if the following properties are true:

i) u+ v = v + u for all u, v ∈ V ,

ii) u+ (v + w) = (u+ v) + w for all u,w ∈ V ,

iii) ∃0 ∈ V for which it holds that 0 + v = v for all v,

iv) for all v there is an element −v such that v + (−v) = 0,

v) α.(β.v) = (α.β).v for all α, β ∈ R and for all v ∈ V ,

vi) 1.v = v for all v ∈ V ,

vii) (α+ β).v = α.v + β.v for all α, β ∈ R and for all v ∈ V ,

viii) α.(v + w) = α.v + α.w for all α ∈ R and for all v, w ∈ V .

An element of the vector space is called vector.

Remark 2.1 (on notation). It is customary to denote vectors either by bold letters (i.e., v ∈ V )
or by letters with an arrow (i.e., v⃗ ∈ V ). Hereinafter we use non-bold and non-arrowed letters
to denote vectors (i.e., v ∈ V ). This does not cause any misunderstandings. In case we work
with a group of vectors vi ∈ Rn, i ∈ {1, . . . , d} and we need to highlight the k−th component, we
use (vi)k.

Examples:
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� The space of ordered pairs of real numbers (u, v) ∈ R2 with summation and product defined
as

(u1, v1) + (u2, v2) = (u1 + u2, v1 + v2), α(u1, v1) = (αu1, αv1)

for all (u1, v1), (u2, v2) ∈ R2 and α ∈ R is a vector space.

� In general, all ordered n−tuples of real numbers (u1, u2, . . . , un) ∈ Rn for n ∈ N form a
vector space.

� The set S of all (x, y) ∈ R2 satisfying

x+ 2y = 0 (1)

is a vector space. Since this is a subset of the vector space mentioned above, it is enough
to verify that ((x1, y1), (x2, y2) ∈ S) ⇒ (x1 + x2, y1 + y2) ∈ S and (α ∈ R&(x, y) ∈ S) ⇒
(αx, αy) ∈ S. So let (x1, y1) and (x2, y2) satisfy (1). Then (x1 + x2, y1 + y2) also satisfies
(1) since

x1 + x2 + 2(y1 + y2) = x1 + 2y1 + x2 + 2y2 = 0.

Next, let α ∈ R be arbitrary number and let (x, y) satisfies (1). Then

αx+ 2αy = α(x+ 2y) = 0

and (αx, αy) ∈ S.

� On the other hand, the set S of all pairs (x, y) ∈ R2 satisfying

x+ 2y = 1

is not a vector space. For example, a zero vector (0, 0) does not belong to S and the third
property from the definition of vector space is not fulfilled.

� The set of polynomials is a vector space.

� The set of polynomials of degree 2 is not a vector space. In particular, a zero polynomial
does not belong to this set as the zero polynomial has not degree 2.

� On the other hand, the set of polynomials of degree 0, 1 or 2 is a vector space.

Definition 2.2. Let V be a vector space and let S ⊂ V be such that

i) ∀s1, s2 ∈ S, s1 + s2 ∈ S and

ii) ∀α ∈ R and ∀s ∈ S we have αs ∈ S.

Then S itself is a vector space and we say that S is a subspace of V . If S is nonempty and
S ̸= V then we will say that S is a proper subspace.

Examples:

� A subset S = {(x, y, 0) ∈ R3} of V = R3 is a proper subspace.

� All (x, y) solving x + 2y = 0 form a subspace of V = R2 see also one of the previous
examples.
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Definition 2.3. Let V be a vector space, n ∈ N and {ui}ni=1 ⊂ V . Their linear combination is
any vector w of the form

w =

n∑
i=1

αiui

where αi are real numbers.

Examples:

� Consider a vector space R3. The vector (2, 5, 3) is a linear combination of (1, 1, 0) and
(0, 1, 1) because

(2, 5, 3) = 2(1, 1, 0) + 3(0, 1, 1).

� On the other hand, (0,−2, 1) is not a linear combination of (1, 1, 0) and (0, 1, 1). Indeed,
if it was, then there would be two numbers α and β such that

(0,−2, 1) = α(1, 1, 0) + β(0, 1, 1).

This equation can be rewritten as a system

0 = α

−2 = α+ β

1 = β

and we deduce that it is impossible to find α and β such that these equations are fulfilled.

Definition 2.4. The set of all linear combinations of v1, v2, . . . , vn is called a linear span of a
set {v1, v2, . . . , vn}. Precisely,

span {v1, v2, . . . , vn} =

{
n∑

i=1

αivi, αi ∈ R

}
.

Lemma 2.1. Linear span is a vector space.

Examples:

� The set {(x, y, z) ∈ R3, 2x+ y+ z = 0} contains a span of v1 = (1,−2, 0) and v2 = (0, 1, 1)
(or, for example, w1 = (1, 0, 2) and w2 = (1, 1, 3)).

� Exercise: try to prove that {(x, y, z) ∈ R3, 2x+ y + z = 0} = span{(1,−2, 0), (0, 1, 1)}.

Definition 2.5. Vectors v1, v2, . . . , vn ∈ V are said to be linearly dependent if the equation

α1v1 + α2v2 + . . .+ αnvn = 0

has a nontrivial solution (i.e. a solution α1, α2, . . . , αn where at least one coefficient is zero).

Vectors v1, v2, . . . , vn ∈ V are linearly independent if the equation

α1v1 + α2v2 + . . .+ αnvn = 0

has only solution α1 = α2 = . . . = αn = 0.

Examples:
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� Vectors (1, 0), (0, 1) and (−2, 3) are linearly dependent since

2.(1, 0) + (−3).(0, 1) + 1.(−2, 3) = (0, 0).

� Vectors (1, 1, 0), (2, 2, 0) and (−1, 0, 1) are linearly dependent since

16.(1, 1, 0) + (−8).(2, 2, 0) + 0.(−1, 0, 1) = (0, 0, 0).

� Vectors (2, 3, 1, 0), (1, 0,−1, 0) and (0, 1, 0,−1) are linearly independent. Indeed, the equa-
tion

α(2, 3, 1, 0) + β(1, 0,−1, 0) + γ(0, 1, 0,−1) = (0, 0, 0, 0)

necessarily yields α = β = γ = 0.

Definition 2.6. Let V = span {v1, v2, . . . , vn}. Then we say that {v1, v2, . . . , vn} generates V
and the vectors {v1, v2, . . . , vn} are generators of V .

Observation 2.1. Let v1, v2, . . . , vn be linearly dependent. Then one of the vectors is a lin-
ear combination of the remaining vectors. Precisely, there is i ∈ {1, . . . , n} such that vi ∈
span {{v1, v2, . . . , vn} \ {vi}}.

Proof. According to assumptions, there is i ∈ {1, . . . , n} such that

α1v1 + α2v2 + . . .+ αnvn = 0

has a solution with αi ̸= 0. Assume, without lost of generality, that i = 1. We may rearrange
the equation as

v1 = −α2

α1
v2 −

α3

α1
v3 − . . .− αn

α1
vn.

Corollary 2.1. Let v1 ∈ span {v2, . . . , vn}. Then

span {v2, . . . , vn} = span {v1, v2, . . . , vn}.

Proof. Clearly, span {v2, . . . , vn} ⊂ span {v1, v2, . . . , vn}. Next, let

v =

n∑
i=1

αivi.

Since v1 =
∑n

i=2 βivi for some βi ∈ R, we get

v =

n∑
i=2

(αi + α1βi)vi

and v ∈ span {v2, . . . , vn}.

Definition 2.7. Let {v1, . . . , vn} be a set of linearly independent vectors that generates V . Then
{v1, . . . , vn} is a basis of V .

Theorem 2.1. Every two basis of a vector space V has the same number of elements.

Definition 2.8. We say that V is of dimension n ∈ N iff every basis has n elements.
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Examples:

� The set {(1, 0), (0, 1)} ⊂ R2 is a basis. Indeed, every vector (a, b) ∈ R2 can be written as
a(1, 0)+b(0, 1). Moreover, the vectors are linearly independent since α1(1, 0)+α2(0, 1) = 0
has only the trivial solution. Thus, the dimension of R2 is 2.

� Vectors {1, x, x2} form a basis of a vector space containing polynomials of degree at most
two. The dimension of this vector space is thus 3.

Definition 2.9. Let {vi, i = 1, . . . , n} be independent vectors and let v ∈ span{vi, i = 1, . . . , n}.
Then the numbers αi, i = 1, . . . , n satisfying

v =

n∑
i=1

αivi

are determined uniquely and they are called coordinates of v with respect to the given basis.

Examples

� The coordinates of (0, 1) with respect to (3, 2) and (4, 3) are (−4, 3). Indeed, −4(3, 2) +
3(4, 3) = (0, 1).

� The coordinates of P (x) = x2 + 3x+ 4 with respect to Q(x) = x2 + 2 and R(x) = 3
2x+ 1

are (1, 2).

2.2 Matrices

Definition 2.10. A matrix is a table of numbers arranged in rows and columns. Namely, let
m,n be natural numbers. Then

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

 = (aij)
m,n
i=1,j=1

The matrix A has m−rows and n−columns. The matrix A is said to be of type (m,n).

Example A matrix (
2 3 0
−1 2 −1

)
has two rows and three columns and it is of type (2, 3) (or it is of type two by three).

Operations with matrices Let A = (aij)
m,n
i=1,j=1 and B = (bij)

m,n
i=1,j=1 be two matrices of

the same type. Then we define

A+B = (aij + bij)
m,n
i=1,j=1.

Let α ∈ R. Then αA = (αaij)
m,n
i=1,j=1.

For a matrix A = (aij)
m,n
i=1,j=1 we define a transpose matrix AT as

AT = (aji)
n,m
j=1,i=1

12



Let A be of type (m,n) and B be of type (n, p). Then C := AB of type (m, p) is defined as

C = (cij)
m,p
i=1,j=1

where

cij =

n∑
k=1

aikbkj .

Example

� (
1 −1 2 0
0 0 1 −2

)
+

(
2 2 2 −5
1 1 −3 4

)
=

(
3 1 4 −5
1 1 −2 2

)
.

�

3

 1 1
2

2 2
−3 1

 =

 3 3
2

6 6
−9 3


� (

1 0
0 1

)T

=

(
1 0
0 1

)
or (

1 1 3
2 −1 1

)T

=

1 2
1 −1
3 1


or

(
3 −1 −1 0

)T
=


3
−1
−1
0


� (

−1 1 0
2 0 1

) 2 −1
−1 −1
0 1

 =

(
−3 0
4 −1

)
.

Remark 2.2. Matrices of a given type (m,n) forms a vector space of dimension nm.

Remark 2.3. Warning:
AB ̸= BA.

Definition 2.11. A matric A is called symmetric if A = AT .

Definition 2.12. A rank of matrix A is a dimension of vector space generated by its rows. It
is denoted by rankA.

Observation 2.2. It holds that rankA = rankAT .

Definition 2.13. An elementary transformation of a matrix is

� scaling the entire row with a nonzero real number or

� interchanging two rows within a matrix or

� adding α−multiple of one row to another for an arbitrary α ∈ R.

13



Let A arise from B by one or more elementary transformations. Then we write A ∼ B.

Example (
2 1
−1 2

)
∼
(
−1 2
2 1

)
∼
(
−2 4
2 1

)
∼
(
−2 4
6 −7

)
.

Definition 2.14. A leading coefficient of a row is the first non-zero coefficient in that row. We
say that a matrix A is in an echelon form if the leading coefficient (also called a pivot) of a
nonzero row is always strictly to the right of the leading coefficient of the row above it.

Example Consider the following matrices:

A =


−1 −1 3 0
0 0 2 1
0 0 0 −1
0 0 0 0

 B =


−1 −1 3 0
0 2 2 1
1 0 −1 −1
0 0 0 3


The matrix A is in echelon form whereas the matrix B is not in echelon form.

Observation 2.3. Let A be in echelon form. Then its rank is equal to the number of non-zero
rows.

Proof. Let v1, . . . , vn denote the non-zero rows. It suffices to show that these vectors are linearly
independent. Let solve the equation

α1v1 + α2v2 + . . .+ αnvn = 0. (2)

Let p1 ∈ N be the position of the leading coefficient of v1. Then the above equation yields

α1(v1)p1
= 0

and α1 = 0. Therefore, the equation is simplified to

α2v2 + α3v3 + . . .+ αnvn = 0.

Similarly as above, let p2 ∈ N be the position of the leading coefficient of v2. Then we deduce

α2(v2)p2
= 0

and α2 = 0. The same can be deduced for every αi, i ∈ N and, consequently, there is only a
trivial solution to (2)

The Gauss elimination method
The Gauss elimination method is a sequence of elementary transformations which transform a
given matrix A into an echelon form. As an example, we take a matrix

A =

2 2 −2
4 1 0
5 2 −1

 .

In the first step, we use elementary transformations in order to get rid of 4 in the second row
and 5 in the last row. So we add (−1) times the first row to the second and −5/2 times the first
row to the last one. We get

A ∼

2 2 −2
0 −3 4
0 −3 4

 .

14



Next, we want to eliminate the second element in the last row. In order to do so, we add (−1)
times the second row to the last one to get2 2 −2

0 −3 4
0 −3 4

 ∼

2 2 −2
0 −3 4
0 0 0

 ∼
(
2 2 −2
0 −3 4

)
.

Here we use the fact that the zero row can be omitted without any serious consequence.

Notice that A has a rank two and that means that the vectors (2, 2,−2), (4, 1, 0) and (5, 2,−1)
are linearly dependent.

2.3 Systems of linear equations

Systems of equations
We are going to deal with system of m linear equations with n unknowns x1, x2, . . . , xn.

a11x1 + a12x2 + . . .+ a1nxn = b1

a21x1 + a22x2 + . . .+ a2nxn = b2

... =
...

am1x1 + am2x2 + . . .+ amnxn = bm

We use notation x = (x1, x2, . . . , xn), b = (b1, b2, . . . , bn) and A = (aij)
mn
i=1,j=1. Then the above

system may be rewritten as
AxT = bT .

The system of equations will be represented by an augmented matrix – i.e. a matrix (A|bT )
where A = (ai,j)

mn
i=1,j=1 and bT is the column on the right hand side. For example, a system of

equations

2x+ 5y = 10

3x+ 4y = 24

is represented by an augmented matrix(
2 5 | 10
3 4 | 24

)
.

Such matrix consists of two parts – matrix A =

(
2 5
3 4

)
and a vector of right hand side b =

(10, 24). Let solve the system by Gauss elimination:(
2 5 | 10
3 4 | 24

)
∼
(
6 15 | 30
3 4 | 24

)
∼
(
6 15 | 30
6 8 | 48

)
∼
(
6 15 | 30
0 −7 | 18

)
The last row of the last matrix represent an equation

−7y = 18 ⇒ y = −18

7
.

The first row of the last matrix represent

6x+ 15y = 30

and once we plug there y = − 18
7 we deduce

x =
80

7
.
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Theorem 2.2 (Frobenius). A system of linear equations has solution if and only if rankA =
rank(A|bT ).

Example: Solve

−x+ y + z = 0

2y + x+ z = 1

2z + 3y = 2.

We have −1 1 1 | 0
1 2 1 | 1
0 3 2 | 2

 ∼

−1 1 1 | 0
0 3 2 | 1
0 3 2 | 2

 ∼

−1 1 1 | 0
0 3 2 | 1
0 0 0 | 1


and, according to the Frobenius theorem, there is no solution to the given system. Let us
emphasize that the last row represents an equation

0x+ 0y + 0z = 1.

Example Let find all solutions to the system

2x+ y − z = 3

x− 2y + 3z = −1

We use the Gauss elimination in order to deduce(
2 1 −1 | 3
1 −2 3 | −1

)
∼
(
1 −2 3 | −1
2 1 −1 | 3

)
∼
(
1 −2 3 | −1
0 5 −7 | 5

)
The red terms are the leading terms. The corresponding unknowns should be expressed by
others. The unknown which does not have a corresponding leading term should be chosen as a
parameter. Here we take z = t where t ∈ R is a parameter. The last row of the last matrix yields
5y − 7t = 5 and thus y = 7

5 t + 1. We deduce from the first row that x = 1 − 1
5 t. All solutions

are of the form

(x, y, z) = (1, 1, 0) + t

(
−1

5
,
7

5
, 1

)
.

Exercise

� Solve

−x+ py + pz = 1

x+ y + pz = 2

px+ y + 2pz = 5− 2x

where p is a real parameter.

2.4 Square matrices

Definition 2.15. Matrices of type (n, n) where n ∈ N are called square matrices.

Definition 2.16. A matrix I of type (n, n) is called an identity matrix if I = (aij)
nn
i=1,j=1,

aii = 1 for all i ∈ {1, . . . , n} and aij = 0 whenever i ̸= j.
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For example,

I =

1 0 0
0 1 0
0 0 1


for n = 3. It holds that AI = IA = A for every matrix A of type (n, n).

Definition 2.17. Let A by a matrix of type (n, n). If there is a matrix B of type (n, n) such
that

AB = BA = I

then B will be called an inverse matrix to A and we use notation B = A−1.

The Gauss elimination may be used to find A−1. In particular, one has to write down an
augmented matrix (A|I) and use elementary transformations to get (I,B). If this is possible,
then B = A−1.

Example Find A−1 to A =

(
2 −1
3 −3

)
:

(
2 −1 | 1 0
3 −3 | 0 1

)
∼
(
2 −1 | 1 0
1 −2 | −1 1

)
∼
(
1 −2 | −1 1
2 −1 | 1 0

)
∼
(
1 −2 | −1 1
0 3 | 3 −2

)
∼
(
1 −2 | −1 1
0 1 | 1 − 2

3

)
∼
(
1 0 | 1 − 1

3
0 1 | 1 − 2

3

)

Consequently, A−1 =

(
1 − 1

3
1 − 2

3

)
.

Definition 2.18. A square matrix is a matrix of type (n, n) for some n ∈ N.
A square matrix A is called regular if there is A−1. Otherwise it is called singular.

Observation 2.4. Let A be a regular matrix. Then a system AxT = bT has a unique solution.

Proof. Indeed, it suffices to apply A−1 from the left side on both sides of equation

AxT = bT

to obtain
xT = A−1bT .

Example The above proof describes another way how to solve a system of equations. Namely,
we can first find A−1 and then xT = A−1bT . Let solve the following two systems

2x+ y + z = 3

x+ 3z = −7

2x+ y = 1

and

2x+ y + z = 0

x+ 3z = 3

2x+ y = −1.
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Note that the matrix A of the systems (without the right hand side) is always the same. We
compute A−1 as follows2 1 1 | 1 0 0

1 0 3 | 0 1 0
2 1 0 | 0 0 1

 ∼

1 0 3 | 0 1 0
2 1 1 | 1 0 0
2 1 0 | 0 0 1


∼

1 0 3 | 0 1 0
0 1 −5 | 1 −2 0
0 1 −6 | 0 −2 1

 ∼

1 0 3 | 0 1 0
0 1 −5 | 1 −2 0
0 0 −1 | −1 0 1


∼

1 0 3 | 0 1 0
0 1 −5 | 1 −2 0
0 0 1 | 1 0 −1

 ∼

1 0 0 | −3 1 3
0 1 0 | 6 −2 −5
0 0 1 | 1 0 −1


Thus, the first system has a solutionx

y
z

 =

−3 1 3
6 −2 −5
1 0 −1

 3
−7
1

 =

−13
27
2


and the second system has a solutionx

y
z

 =

−3 1 3
6 −2 −5
1 0 −1

 0
3
−1

 =

 0
−1
1

 .

2.5 Determinant

Definition 2.19. Let A be a square matrix of type (1, 1) – i.e., A = (a) for some a ∈ R. The
determinant of such matrix A is detA = a.
Let A = (ai,j) be a square matrix of type (n, n). We denote by Mij the determinant of a
matrix (n− 1, n− 1) which arises from A by leaving out the i−th row and j−th column. Choose
k ∈ {1, . . . , n}. Then

detA = (−1)k+1ak1Mk1 + (−1)k+2ak2Mk2 + . . .+ (−1)k+naknMkn =

n∑
j=1

(−1)k+jakjMkj .

Examples:
Let

A =

(
a11 a12
a21 a22

)
.

Then detA = a11a22 − a12a21.
Let

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 .

Then

detA = a11a22a33 + a12a23a31 + a13a21a32 − a13a22a31 − a12a21a33 − a11a23a32.

Observation 2.5. Let A be a square matrix. Then
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� if B arises from A by multiplying one row by a real number α, then detB = α detA.

� If B arises from A by switching two rows, then detB = − detA.

� If B arises from A by adding α−multiple of one row to another one, then detB = detA.

Observation 2.6. Let A be a square matrix having zeros under the main diagonal (i.e., aij = 0
for i > j). Then detA = a11a22a33 . . . ann.

Example Compute detA for

A =


−1 1 0 2
0 3 −3 1
2 −3 0 2
0 0 3 −1

 .

According to the rules for transformations, we have

det


−1 1 0 2
0 3 −3 1
2 −3 0 2
0 0 3 −1

 = det


−1 1 0 2
0 3 −3 1
0 −1 0 6
0 0 3 −1



= −det


−1 1 0 2
0 −1 0 6
0 3 −3 1
0 0 3 −1

 = − det


−1 1 0 2
0 −1 0 6
0 0 −3 19
0 0 3 −1



= − det


−1 1 0 2
0 −1 0 6
0 0 −3 19
0 0 0 18

 = 54.

Theorem 2.3. Let A be n× n matrix. Statements following are equivalent:

� detA = 0.

� AxT = 0 has a nontrivial solution.

� A is a singular matrix matrix.

� rankA = n.

� Rows of A are linearly dependent vectors.

� Columns of A are linearly dependent vectors.

Theorem 2.4 (the Cramer rule). Consider a system AxT = bT . Assume that A is a regular
n by n matrix. Let j ∈ {1, . . . , n} and denote by Aj a matrix arising from A by replacing j−th
column by a vector bT . Then

xj =
detAj

detA
.
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Example We use the Cramer rule to solve

3x− 2y + 4z = 3

−2x+ 5y + z = 5

x+ y − 5z = 0

We have A =

 3 −2 4
−2 5 1
1 1 −5

 and detA = −88.

Further, Ax =

3 −2 4
5 5 1
0 1 −5

 and detAx = −108. Consequently, x = −108
−88 = 27

22 .

Next, Ay =

 3 3 4
−2 5 1
1 0 −5

 and detAy = −122. Consequently y = −122
−88 = 61

44 .

Finally, Az =

 3 −2 3
−2 5 5
1 1 0

 and detAz = −46. Consequently z = −46
−88 = 23

44 .

2.6 Eigenvalues and eigenvectors

Definition 2.20. Let A be a square matrix. We are looking for λ for which there is a nontrivial
solution to

AxT = λxT .

Such number λ is called eigenvalue.

This means that
(A− λI)xT = 0.

This equation has a nontrivial solution only if A − λI is a singular matrix. Consequently, λ is
an eigenvalue if and only if

det(A− λI) = 0.

Definition 2.21. The polynomial det(A− λI) is called a characteristic polynomial.

Definition 2.22. Let λ be an eigenvalue of A. A vector v solving

(A− λI)v = 0

is called an eigenvector corresponding to λ.

Remark 2.4. If v is an eigenvector then tv is also an eigenvector for all t ∈ R.
Let v and w be eigenvectors corresponding to the same eigenvalue. Then tv + sw is also an
eigenvector for all t, s ∈ R.
Generally, let ui, i = {1, . . . , k} be eigenvectors corresponding to λ. Then all their linear combi-
nations are also eigenvectors corresponding to λ.
In what follows, if we say that there is only one eigenvector v, we mean that there is just one-
dimensional space of eigenvectors spanned by v. If we say that there are two eigenvectors v, w,
we mean that there is two-dimensional space of eigenvectors spanned by v, w. And so on.
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Example Find all eigenvalues and eigenvectors to A =

(
5 1
4 5

)
.

First, we find eigenvalues by solving

0 = det

((
5 1
4 5

)
− λ

(
1 0
0 1

))
= det

(
5− λ 1
4 5− λ

)
= 25− 10λ+ λ2 − 4 = λ2 − 10λ+ 21.

We obtain
λ1 = 3, λ2 = 7.

Consider first λ1 = 3. Then we have to solve

(
2 1
4 2

)(
x
y

)
= 0. We have

(
2 1
4 2

)
∼
(
2 1

)
and we take y = t and x = − t

2 . Thus (x, y) = t(−1/2, 1) and v1 = (−1/2, 1) is an eigenvector
related to λ = 3.

Consider λ2 = 7. Then (
−2 1
4 −2

)
∼
(
−2 1

)
.

and we take y = t and x = t
2 . Consequently, v2 = (1/2, 1) is an eigenvector related to the

eigenvalue λ = 7.

Exercise: Find eigenvalues and eigenvectors to A =

(
10 −9
4 −2

)
.

First, we have to solve

0 = det

(
10− λ −9

4 −2− λ

)
= λ2 − 8λ+ 16.

This yields the only solution λ1 = 4. To find an eigenvector we solve(
6 −9
4 −6

)
∼
(
2 −3

)
.

Thus, (3/2, 1) is an eigenvector.

Exercise: Find eigenvalues and eigenvectors to A =

(
1 0
0 1

)
.

Solve

0 = det

(
1− λ 0
0 1− λ

)
= (1− λ)2.

We get λ = 1. To find eigenvalues we have to solve(
0 0
0 0

)
∼
(
0 0

)
.

The solutions are of the form s(1, 0) + t(0, 1) for all real numbers s, t ∈ R.
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Definition 2.23. A generalized eigenvector w corresponding to an eigenvalue λ is a vector
satisfying

(A− λI)wT = vT

where v is an eigenvector corresponding to λ.

Lemma 2.2. Let λ be a double root of the characteristic polynomial. Assume, moreover, that
there is just one corresponding eigenvector. Then there is a generalized eigenvector corresponding
to λ.

Exercise: Consider again the matrix

(
10 −9
4 −2

)
. We already know that λ = 4 is the only

eigenvalue and, consequently, the matrix A− λI has the form(
6 −9
4 −6

)
and the corresponding eigenvector is

(
3 2

)
. We look for a vector w = (x, y) solving(

6 −9
4 −6

)
wT =

(
3
2

)
.

By the Gauss elimination (
6 −9 | 3
4 −6 | 2

)
∼
(
2 −3 | 1

)
Here y = t, t ∈ R is free and we have 2x− 3t = 1 and, therefore, x = 1

2 −
3
2 t. Every vector of the

form
(
1
2 − 3

2 t, t
)
is the generalized eigenvector – for example a vector (−1, 1).

2.7 Definiteness

Definition 2.24. Let A be an n by n symmetric matrix. The mapping

Q :
Rn → R
v 7→ vAvT

is called a quadratic form.

Examples:

� Quadratic form given by a matrix A =

(
1 −1
−1 1

)
is

(x, y) 7→
(
x y

)( 1 −1
−1 1

)(
x
y

)
= x2 − 2xy + y2

and we write Q(x, y) = x2 − 2xy + y2.

� A matrix A associated with the quadratic form

Q(x, y, z) = x2 − 3xz + y2 − z2

is A =

 1 0 − 3
2

0 1 0
− 3

2 0 −1

.
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� A quadratic form given by A =

1 0 2
0 −1 1
2 1 −2

 is

Q(x, y, z) = x2 − y2 − 2z2 + 4xz + 2yz.

Definition 2.25. A quadratic form Q is

� positive-definite if Q(v) > 0 for every v ∈ Rn \ {0}

� positive-semidefinite if Q(v) ≥ 0 for every v ∈ Rn

� negative-definite if Q(v) < 0 for every v ∈ Rn \ {0}

� negative-semidefinite if Q(v) ≤ 0 for every v ∈ Rn

� indefinite if there are v1, v2 ∈ R such that Q(v1) < 0 < Q(v2)

Examples:

� Q(x, y) = x2 − 2xy + y2 is positive-semidefinite since Q(x, y) = (x− y)2 ≥ 0. Note that Q
is not positive-definite as Q(1, 1) = 0.

� Q(x, y) = x2 − y2 is indefinite because Q(1, 0) = 1 > 0 and Q(0, 1) = −1 < 0.

� Q(x, y) = x2 + 2xy + 2y2 is positive-definite because Q(x, y) = (x + y)2 + y2 and this is
always non-negative and Q(x, y) = 0 if and only if x = y = 0.

� Q(x, y) =
(
x y

)(1 1
1 0

)(
x
y

)
is indefinite. Indeed, Q(x, y) = x2 + 2xy = x(x + 2y) and,

clearly, Q(1, 0) = 1 > 0 and Q(1,−1) = −1 < 0.

Definition 2.26. The definiteness of a symmetric matrix A is inherited from the associated
quadratic form.

Theorem 2.5 (Sylvester rule). Let A be n by n matrix. Denote D0 = 1, D1 = det(a11),

D2 = det

(
a11 a12
a21 a22

)
,. . . , Dn = detA and assume D0, D1, . . . , Dn ̸= 0. If all products D0 ·

D1, D1 · D2, . . . , Dn−1Dn are positive, A is a positive-definite matrix. If all the products are
negative, A is a negative-definite matrix.

Examples:

� Q(x, y) = x2 + 2xy + 2y2 is positive-definite (we already know it). Nevertheless, let verify

it by the Sylvester rule. The associated symmetric matrix is

(
1 1
1 2

)
and we have D0 = 1,

D1 = 1, D2 = 1 and Q is indead positive-definite.

� Consider Q(x, y) = −x2 − y2. We have Q(x, y) =
(
x y

)(−1 0
0 −1

)(
x
y

)
and, therefore,

D0 = 1, D1 = −1, and D2 = 1. Consequently, the Sylvester rule yields that Q is negative-
definite.
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3 Functions

3.1 Mappings, introduction

Definition 3.1. Let f ⊂ (X × Y ) be a subset which fulfills for every x ∈ X and y1, y2 ∈ Y that

((⟨x, y1⟩ ∈ f)&(⟨x, y2⟩ ∈ f)) ⇒ (y1 = y2).

Then we say that f is a mapping which maps X to Y . We write f : X → Y . A usual notation
for ⟨x, y⟩ ∈ f is f(x) = y or f : x 7→ y.

A domain is a set of all x ∈ X for which there exists y such that f(x) = y. The domain of
f is denoted by Dom f . The set of all y ∈ Y for which there exists x ∈ X such that f(x) = y is
called range. It is denoted by Ran f .

Let A ⊂ Dom f . An image of A (denoted by f(A)) is a set in Ran f defined as

f(A) = {y ∈ Y, ∃x ∈ A, y = f(x)}.

Let B ⊂ Ran f . A preimage of B (denoted by f−1(B)) is a set in Dom f defined as

f−1(B) = {x ∈ X, ∃y ∈ B, y = f(x)}.

Remark 3.1. Usually, if X and Y are number sets (N, Z, Q, or R), then f is called a function.
Nevertheless, we will often use the term ’function’ also for mappings.

Example: Let f = {⟨3, 1⟩, ⟨1, 2⟩, ⟨2, 2⟩}. We have Dom f = {1, 2, 3}, Ran f = {1, 2}. On the
other hand, let g = {⟨1, 3⟩, ⟨2, 1⟩, ⟨2, 2⟩}. Now g is not a function because we have one value of
x (x = 2) which is mapped to two different values of y (either y = 1 or y = 2). This contradicts
the very first property of the definition.

Observation 3.1. For every A, B ⊂ Dom f it holds that

f(A ∪B) = f(A) ∪ f(B)

Proof. It holds that

(y ∈ f(A ∪B)) ⇒ (∃x ∈ (A ∪B), y = f(x)) ⇒ ((∃x ∈ A, y = f(x)) ∨ (∃x ∈ B, y = f(x)))

⇒ ((y ∈ f(A)) ∨ (y ∈ f(B))) ⇒ (y ∈ f(A) ∪ f(B))

and we have just proven that f(A ∪B) ⊂ (f(A) ∪ f(B)).
On the other hand

(y ∈ f(A) ∪ f(B)) ⇒ ((y ∈ f(A)) ∨ (y ∈ f(B))) ⇒ ((∃x ∈ A, y = f(x)) ∨ (∃x ∈ B, y = f(x)))

⇒ (∃x ∈ (A ∪B), y = f(x)) ⇒ (y ∈ f(A ∪B))

which yields (f(A) ∪ f(B)) ⊂ f(A ∪B). This concludes the proof.

Definition 3.2. A function f : X 7→ Y is said to be

� injective if ∀x1, x2 ∈ Dom f , f(x1) = f(x2) ⇒ x1 = x2,

� surjective if Ran f = Y ,

� bijective if it is surjective and injective.
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We use a term injection (resp. surjection or bijection) for injective (resp. surjective of bijective)
function.

Example: Let consider the mapping from the previous example, i.e., f = {⟨3, 1⟩, ⟨1, 2⟩, ⟨2, 2⟩}.
This function is not injective since f(1) = 2 as well as f(2) = 2. On the other hand, when taking
Y = {1, 2}, then f is sufjective.

Definition 3.3. Let f : X → Y and let g : Y → Z be such that Ran f ⊂ Dom g. Then a
composition of functions g and f is a function g ◦ f : X → Z defined as

(g ◦ f)(x) = g(f(x)).

If there is a function g : Y → X such that Dom f = Ran g, Dom g = Ran f , (g ◦ f)(x) = x for
all x ∈ Dom f then g is called an inverse function to f and we denote it by f−1. An invertible
function is a function for which there exists the inverse function.

Example: Take the function f from the previous example and consider a function h given as

h = {⟨1, 5⟩, ⟨2, 8, ⟩}.

Since Dom h = {1, 2} = Ran f , we may write down a function h ◦ f (or, equivalently h(f(x)).
We have

h(f(3)) = 5, h(f(1)) = 8, h(f(2)) = 8.

The function f from the previous example is not invertible since it is not injective. Take a
function j defined as

j = {⟨1, 4⟩, ⟨2, 1⟩, ⟨3, 7⟩, ⟨4, 10⟩}.

The function h is injective and it is surjective assuming Y = {1, 4, 7, 10}. Thus there exists j−1

and it is a function
j−1 = {⟨1, 2⟩, ⟨4, 1⟩, ⟨7, 3⟩, ⟨10, 4⟩}.

Observation 3.2. It holds that Dom f = Ran f−1 and Ran f = Dom f−1 whenever f is an
invertible function.

Proof. Obvious.

Recall that a function f(x) = x is often called identity and that not every function has its
inverse. Moreover, f ◦ g is also an identity.

Observation 3.3. Let f : X → Y , Dom f = X. The inverse function f−1 exists if and only if
f is injective.

Proof. Let f be injective. Thus, for every y ∈ Ran f there exists only one x ∈ Dom f such that
y = f(x). It suffices to define f−1(y) = x.

Let f be not injective. There exist x1, x2 ∈ Dom f and y ∈ Ran f such that x1 ̸= x2

and f(x1) = f(x2) = y. Let f−1(y) = x1 – this is necessary to have f−1(f(x1)) = x1. Then
f−1(f(x2)) = f−1(y) = x1 ̸= x2 and thus f−1 is not an inverse function.

Definition 3.4. An indicator function of a set A ⊂ X is a function f : X 7→ {0, 1}, Dom f = X
fulfilling f(x) = 1 if and only if x ∈ A. Such function is denoted by χA.

Definition 3.5. We say that f : X 7→ R is bounded from above if there is M ∈ R such that
f(x) ≤ M for each x ∈ Dom f . It is bounded from below if there is m ∈ R such that f(x) ≥ m
for every x ∈ Dom f . We say that f is bounded if f is bounded from above and from below.

25



3.2 Exercises

1. Show that 1 > 0.

2. Show that sup(0, 2) = sup[0, 2] = 2.

3. Find supA and inf A of A =
{

1
n

}∞
n=1

(i.e., a set A =
{
1, 1

2 ,
1
3 ,

1
4 ,

1
5 , . . .

}
).

4. Which of these subsets of N× N is a function?

(a) f = {⟨1, 5⟩, ⟨2, 4⟩, ⟨1, 3⟩}
(b) g = {⟨1, 2⟩, ⟨5, 3⟩, ⟨10, 1⟩}
(c) h = {⟨3, 3⟩, ⟨4, 3⟩, ⟨7, 7⟩, ⟨10, 3⟩}

5. Consider a function h defined in the previous exercise. Write Dom h and Ran h.

6. Does the following modification of Observation 3.1

∀A,B ⊂ Dom f, f(A ∩B) = f(A) ∩ f(B)

hold? If yes, prove it. If no, try to think for which functions does it hold.

7. Let f, g : N 7→ N be defined as

f = {⟨2, 2⟩, ⟨3, 2⟩, ⟨4, 6⟩, ⟨1, 3⟩}
g = {⟨2, 3⟩, ⟨3, 2⟩, ⟨6, 2⟩}

Write f ◦ g and g ◦ f .

8. Let f be an invertible function. Show that f−1 is determined uniquely.

3.3 Real functions

By a real function we mean a function f : R 7→ R.

Definition 3.6. A graph of a function f is a subset of plane consisting of points ⟨x, f(x)⟩ where
x ∈ Dom f .

Consider a function f = {⟨1, 0⟩, ⟨−1, 3⟩, ⟨0,−2⟩}. Its graph looks as follows

x

y

1-1

3

-2

It is worth pointing out that Dom f = {−1, 0, 1} and Ran f = {−2, 0, 3}.
A graph of function f = 2χ(−1,1) − 2χ{−1,1} + χ[1,∞) is
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y

1-1

Definition 3.7. Let f : R 7→ R and I ⊂ Dom f be an interval. We say that f is on I

� increasing if ∀x1, x2 ∈ I, (x1 < x2) ⇒ f(x1) < f(x2),

� decreasing if ∀x1, x2 ∈ I, (x1 < x2) ⇒ f(x1) > f(x2),

� non-decreasing if ∀x1, x2 ∈ I, (x1 < x2) ⇒ f(x1) ≤ f(x2),

� non-increasing if ∀x1, x2 ∈ I, (x1 < x2) ⇒ f(x1) ≥ f(x2).

If f posses one of these properties we will say that f is monotone.

Definition 3.8. A function f : R 7→ R is called periodic, if there is a number l > 0 such that
f(x) = f(x + l) for all x ∈ R. The least number l with that property is called a period of a
function f and f is then l−periodic.

Definition 3.9. A function f : R 7→ R is said to be continuous at a point x0 ∈ Dom f if

∀ε > 0, ∃δ > 0, ∀x ∈ (x0 − δ, x0 + δ) ∩Dom f, |f(x)− f(x0)| < ε.

A function f : R 7→ R is said to be left-continuous (resp. right-continuous) at a point x0 ∈ Dom f
if

∀ε > 0, ∃δ > 0, ∀x ∈ (x0 − δ, x0) ∩Dom f, |f(x)− f(x0)| < ε

(resp. ∀ε > 0, ∃δ > 0, ∀x ∈ (x0, x0 + δ) ∩Dom f, |f(x)− f(x0)| < ε)

We say that f is continuous on a set S ⊂ R if it is continuous at all of its points.

We define a function sgn (x) = χ[0,∞) − χ(−∞,0) – the function is called ’signum’ or ’sign’,
it is equal to −1 for x negative and 1 otherwise. This function is not continuous at x0 = 0.
However, it is right-continuous at 0. Indeed, let ε = 1

2 . Then for every δ > 0, − δ
2 ∈ (−δ, δ) and∣∣∣∣sgn (−δ

2

)
− sgn (0)

∣∣∣∣ = | − 1− 1| = 2 >
1

2
.

On the other hand, for every ε > 0 we can state (for example) δ = ε and then for every x ∈ (0, δ)
it holds that sgn (x) = 1 = sgn (0) and thus |sgn (x)− sgn (0)| = 0 < ε.

Before we go on let us recall the triangle inequality

|a+ b| ≤ |a|+ |b|

which holds true for all a, b ∈ R. We immediately deduce that, also,

|a| − |b| ≤ |a− b|.
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Observation 3.4. Let f and g be functions continuous at x0. Then also f(x) ± g(x) and

f(x) · g(x) are continuous at x0. Moreover, if g(x0) ̸= 0 then f(x)
g(x) will be continuous at x0.

Proof. Proof: We prove it for f + g as f − g can be done similarly. Due to continuity we have
∀ε > 0 ∃δ1 > 0 and δ2 > 0 such that |f(x) − f(x0)| < ε

2 and |g(x) − g(x0)| < ε
2 whenever

|x− x0| < δ. But this means that (due to the triangle inequality)

|f(x) + g(x)− (f(x0) + g(x0))| < |f(x)− f(x0)|+ |g(x)− g(x0)| < ε.

Now we turn our attention to the product rule. First of all, since f(x0) is real and the function
is continuous, there exists δ1 > 0 and M1 > 0 such that |f(x)| < M1 whenever x ∈ (x0 −
δ1, x0 + δ1) ∩Dom f (see exercises at the end of this section). Similarly, there exists δ2 > 0 and
M2 > 0 such that |g(x)| < M2 whenever x ∈ (x0 − δ2, x0 + δ2) ∩ Dom f . Due to continuity, for
all ε > 0 there exists δ > 0 such that |f(x) − f(x0)| < ε

2M2
and |g(x) − g(x0)| < ε

2M1
for all

x ∈ (x0 − δ, x0 + δ). We may moreover assume that δ < min{δ1, δ2}. Then we have

|f(x)g(x)− f(x0)g(x0)| = |f(x)(g(x)− g(x0)) + g(x0)(f(x)− f(x0))|
≤ |f(x)||g(x)− g(x0)|+ |g(x0)||f(x)− f(x0)| < ε

for all x ∈ (x0 − δ, x0 + δ).
To prove the last claim it suffices to show that 1

g is continuous at x0 and to use the just

proven product rule. Without loss of generality, assume that g(x0) > 0 and denote its value
by y0 = g(x0). Then, due to the continuity of g, there exists δ1 > 0 such that g(x) > y0

2
for all x ∈ (x0 − δ1, x0 + δ1) ∩ Dom g. Further, for each ε > 0 there exists δ > 0 such that
|g(x) − g(x0)| < y20

ε
2 for each x ∈ (x0 − δ, x0 + δ) and, moreover, we assume that δ < δ1. Then

we have ∣∣∣∣ 1

g(x)
− 1

g(x0)

∣∣∣∣ = ∣∣∣∣g(x0)− g(x)

g(x)g(x0)

∣∣∣∣ ≤ |g(x0)− g(x)|
y0

y0

2

< ε

for each x ∈ (x0 − δ, x0 + δ) ∩Dom g.

It is easy to deduce that f(x) ≡ c and f(x) = x are continuous on R.

Definition 3.10. We say that f is an odd function if

∀x ∈ Dom f, −x ∈ Dom f and f(−x) = −f(x).

We say that f is an even function if

∀x ∈ Dom f, −x ∈ Dom f and f(−x) = f(x).

3.4 Further comments on continuous functions

This section is devoted to advanced properties of continuous functions. They will be mentioned
without a proof which is usually not elementary.

Before that, we introduce a notion of a maximum and minimum of set A ⊂ R.

Definition 3.11. Let supA be an element of A ⊂ R. Then supA is the highest number of A
(or a maximum of A) and we write supA = maxA. Similarly, if inf A is an element of A, then
inf A will be the lowest number of A (or a minimum of A) and we write inf A = minA.
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The minimum and maximum does not necessarily exists for a general set A ⊂ R. For
example, A =

{
1
n , n ∈ N

}
has maximum 1, however, minimum does not exists. The infimum 0

is not contained in this set.
Note also that every set A ⊂ R with finitely many elements has its maximum and minimum.

Definition 3.12. Let f be continuous on an interval I ⊂ R. Then we write f ∈ C(I).

Theorem 3.1 (Weierstrass). Let f ∈ C([a, b]). Then f is bounded and there exists t, u ∈ [a, b]
such that f(u) ≤ f(x) ≤ f(t) for all x ∈ [a, b].

Actually, the previous theorem states that every function which is continuous on a closed
interval attains its maximum and minimum value.

Theorem 3.2 (Bolzano). Let f ∈ C([a, b]) and f(a)f(b) < 0. Then there is η ∈ (a, b) such that
f(η) = 0.

Lemma 3.1. Let f be an odd function and (−a, a) ⊂ Dom f for some a > 0. Then f(0) = 0.

3.5 Elementary functions

Now we are in position where we can define and state basic properties of functions which will be
of use hereinafter.

3.5.1 Polynomials

Polynomials are function which arises from a constant function f ≡ c, c ∈ R and an identity func-
tion f(x) = x by finite number of multiplication and additions. In particular, every polynomial
is of the form

p(x) = anx
n + an−1x

n−1 + . . .+ a1x
1 + a0,

where n ∈ N and a0, . . . , an ∈ R. The numbers a0, . . . , an are called coefficients. The degree of
p(x) is n in a case an ̸= 0 and we write deg p = n. The term anx

n is called a leading term.
Recall that p(x) = xn is odd function for odd n and it is an even function for n even. The
maximal domain of p(x) is always R. All x such that p(x) = 0 are called roots of polynomial p.
Let x0 be a root of p(x). Then p(x) = (x− x0)q(x) where q(x) is a polynomial and it holds that
deg p(x) = deg q(x) + 1.

3.5.2 Rational functions

A rational function is a fraction whose nominator and denominator are polynomials. I.e., a
rational function f is of the form

f(x) =
p(x)

q(x)
.

The domain of f is all real numbers except roots of q(x).

3.5.3 Exponential and logarithm

Consider a number a > 0. Let n ∈ N, we define an = a · a · . . . · a where a appears n times on
the right hand side. Further, we define a

1
n as such number b that bn = a. This allows to define

ar for all rational numbers r ∈ Q. Namely, let r > 0, we define ar = a
p
q = (ap)

1
q . For r < 0 we

take ar = 1
a−r . Finally, we are allowed to define uniqely a continuous function

f(x) = ax (3)
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whose values are prescribed in the aforementioned way for all rational inputs. Since the function
is constant for a ≡ 1, we remove this particular base from our definition and we consider the
relation (3) only for a ∈ (0, 1) ∪ (1,∞). It holds that Dom f = R and Ran f = (0,∞). Further,
f(0) = 1 (roughly speaking, every number powered to 0 equals one). The function is strictly
increasing for a > 1 and strictly decreasing for a < 1. The picture below is a graph of a function
f(x) = ax for some a > 0.

x

y
f(x) = ax, a > 1

Since x 7→ ax is injective there exists an inverse function. We will denote it by loga and it is
called logarithm to base a. In particular

loga y = x ⇔ ax = y.

Recall that a ∈ (0, 1) ∪ (1,∞) and, due to the properties of the inverse functions, Dom loga =
(0,∞) and Ran loga = R. Recall also, that since a0 = 1, we have loga 1 = 0 for every a ∈
(0, 1) ∪ (1,∞).

The graph of f(x) = loga(x), a > 1 is the following
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Let e be Euler’s number (for its definition see relation (5)). The logarithm to base e is
called natural logarithm and, because of its importance, we omit the index e in its notation (i.e.
log x = loge x).

3.5.4 Irrational functions

Next, we define nth root f(x) = n
√
x as an inverse to g(x) = xn. Recall that g is invertible for n

odd and Dom g = Ran g = R. Thus, Dom n
√
x = Ran n

√
x = R for n odd.

However, g is not invertible for n even. In that case we have to restrict the domain of g to
[0,∞) in order to have an injective function. The range of this restricted function is also [0,∞).
As a consequence, Dom n

√
x = Ran n

√
x = [0,∞) for n even.

The nth root is always an increasing function.

3.5.5 Trigonometric functions

There is just one pair of continuous functions s(x) and c(x) with the following properties

� s(x)2 + c(x)2 = 1

� s(x+ y) = s(x)c(y) + c(x)s(y)

� c(x+ y) = c(x)c(y)− s(x)s(y)

� 0 < xc(x) < s(x) < x for all x ∈ (0, 1).

The function s is called sinus and the function c is called cosine. We also introduce notation
sinx = s(x) and cosx = c(x). These functions have the following properties:

� Dom sinx = Dom cosx = R, Ran sinx = Ran cosx = [−1, 1].

� sinx is an odd function, cosx is an even function.

31



� sinx and cosx are 2π periodic function.

There are several ’known’ values of sin and cos:
x = 0 π

6
π
4

π
3

π
2 π 3

2π

sinx 0 1
2

√
2
2

√
3
2 1 0 −1

cosx 1
√
3
2

√
2
2

1
2 0 −1 0

Besides, we define a function tanx = sin x
cos x (tangens) and a function cotx = cos x

sin x (cotangens).
These functions are π−periodic, their range is R and

Dom tanx = R \
{π
2
+ kπ, k ∈ Z

}
, Dom cotx = R \ {kπ, k ∈ Z} .

3.5.6 Cyclometric functions

Roughly speaking, cyclometric functions are inverse functions to the aforementioned trigonomet-
ric functions. However, every trigonometric function is periodic and thus it is not one-to-one.
To obtain the inverse function, we have to restrict the domain of every trigonometric function.
In particular, we define functions sinr, cosr, tanr and cotr as follows

sinr x = sinx, Dom sinr = [−π2, π2]

cosr x = cosx, Dom cosr = [0, π]

tanr x = tanx, Dom tanr = [−π2, π2]

cotr x = cotx, Dom cotr = [0, π]

Now, since these functions are injective, we may define

arcsin = sin−1
r

arccos = cos−1
r

arctan = tan−1
r

arccot = cot−1
r

Let write down several properties of each function:

� Dom arcsin = [−1, 1], Ran arcsin =
[
−π

2 ,
π
2

]
, arcsin is an increasing function and arcsin(−1) =

−π
2 , arcsin(0) = 0 and arcsin(1) = π

2

� Dom arccos = [−1, 1], Ran arccos = [0, π], arccos is a decreasing function and arccos(−1) =
π, arccos(0) = π

2 and arccos(1) = 0.

� Dom arctan = R, Ran arctan =
(
−π

2 ,
π
2

)
, arctan is an increasing function and arctan(0) =

0.

� Dom arccot = R, Ran arccot = (0, π), arccot is a decreasing function and arccot(0) = π
2 .

3.6 Exercises

1. Try to think about the following statement: If both functions f(x) and g(x) are not mono-
tone on R, then their sum f(x) + g(x) is not monotone on R.
Prove if it is true, find a counterexample if it is false.
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2. If a function is not monotone, then it does not have an inverse function. It is true or false?
And why?

3. Let f be increasing invertible function. Show that f−1 is also increasing. Consider also
the case of decreasing invertible function.

4. Use a definition of continuity in order to proof that a function f(x) = x2χ(−1,1) + χ[1,3] is
continuous in x0 = 1.

5. Determine all points of continuity of a function f(x) = xχQ − xχR\Q.

6. Find all roots of p(x) = x3 − 6x2 + 11x− 6.

7. Let f be continuous at x0. Then there exists δ > 0 and M > 0 such that |f(x)| < M for
every x ∈ (x0 − δ, x0 + δ) ∩Dom f . Prove or disprove this claim.

8. Deduce the values of sinx and cosx for x = 2
3π,

3
4π,

5
6π,

7
6π,

5
4π,

4
3π,

5
3π,

7
4π,

11
6 π.

3.7 Limits of functions

Definition 3.13. A limit point of a set S ⊂ R is every point x0 ∈ R such that for every δ > 0
it holds that ((x0 − δ, x0) ∪ (x0, x0 + δ)) ∩ S ̸= ∅.

Consider, for example, S = (0, 1)∪{2}. The set of all its limit point is a closed interval [0, 1].
We are ready to define a limit of a function. First, we consider finite limits.

Definition 3.14. Let f : R 7→ R and let x0 be a limit point of Dom f . We say, that A ∈ R is a
limit of f at x0 if

∀ε > 0, ∃δ > 0, ∀x ∈ ((x0 − δ, x0) ∪ (x0, x0 + δ)) ∩Dom f, |f(x)−A| < ε.

We write
lim

x→x0

f(x) = A

Observation 3.5. Once the limit exists, it is determined uniquely.

Proof. Let limx→x0
f(x) = A and limx→x0

f(x) = B for some different A,B ∈ R. Take ε =
1
3 |B−A|. According to the definition of a limit, there exists δ > 0 such that |f(x)−A| < ε and,
simultaneously, |f(x) − B| < ε for some x ∈ (x0 − δ, x0 + δ). We use the triangle inequality to
deduce

|A−B| = |A− f(x) + f(x)−B| ≤ |A− f(x)|+ |f(x)−B| ≤ 2

3
|A−B|.

Thus, the definition of the limit is correct.

Observation 3.6. Let f be a function continuous in a limit point x0 of Dom f . Then

lim
x→x0

f(x) = f(x0).

Proof. Let ε > 0 be arbitrary. As f is continuous, there exists δ > 0 such that |f(x)−f(x0)| < ε
whenever |x − x0| < ε, x ∈ Dom f . But that is exactly that δ which suits the definition of a
limit.
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Here we would like to emphasize that every elementary function from the previous chapter is
continuous on its domain.

This is the first tool which allows a computation. For example

lim
x→3

x− 5 = −2.

Ok, that was too easy. Anyway, we may use it to simplify fractions. Consider for example

a function f(x) = x2+4x+3
x2−1 . This function is clearly not defined at points −1 and 1 and is

continuous everywhere else. Anyway, we may compute

lim
x→−1

x2 + 4x+ 3

x2 − 1
= lim

x→−1

(x+ 1)(x+ 3)

(x− 1)(x+ 1)
= lim

x→−1

x+ 3

x− 1
= −1

Definition 3.15. Let x0 be a limit point of Dom f . We say that A ∈ R is a left-sided limit of
f at x0 (resp. right-sided limit of f in x0) if

∀ε > 0, ∃δ > 0, ∀x ∈ (x0 − δ, x0) ∩Dom f, |f(x)−A| < ε.

(resp.
∀ε > 0, ∃δ > 0, ∀x ∈ (x0, x0 + δ) ∩Dom f, |f(x)−A| < ε.)

We write
lim

x→x0−
f(x) = A (resp. lim

x→x0+
f(x) = A).

A special case of the one-sided limit is a limit at infinity. This is defined as follows

Definition 3.16. Let for all K ∈ R there be x ∈ Dom f such that x > K. We say that A ∈ R
is a limit of f at ∞ if

∀ε > 0, ∃K ∈ R, ∀x > K, x ∈ Dom f, |f(x)−A| < ε.

We write limx→∞ f(x) = A.
We say that A is a limit of f(x) at −∞ if A is a limit of f(−x) at ∞. We write limx→−∞ f(x) =
A.

Besides that, we define also infinite limits

Definition 3.17. Let x0 be a limit point of Dom f . We say that +∞ is a limit of f at a point
x0 if

∀K > 0, δ > 0, ∀x ∈ ((x0 − δ, x0) ∪ (x0, x0 + δ)) ∩Dom f, f(x) > K.

We write limx→x0
f(x) = +∞.

We say that −∞ is a limit of f at x0 if limx→x0
−f(x) = +∞. We write limx→x0

f(x) = −∞.

Of course, one can define also one-sided infinite limits and infinite limits in infinity. We left
it to reader as an exercise.

The following observation is one of the most crucial tool for the computation of limits. We
call it ’arithmetic of limits’.

Lemma 3.2 (Arithmetic of limits). Let f, g : R 7→ R and let x0 be a limit point of Dom f and
Dom g. Let, moreover, c ∈ R. Then

lim
x→x0

(f(x)± g(x)) = lim
x→x0

f(x)± lim
x→x0

g(x)

lim
x→x0

cf(x) = c lim
x→x0

f(x)

lim
x→x0

(f(x)g(x)) = lim
x→x0

f(x) lim
x→x0

g(x)

lim
x→x0

f(x)

g(x)
=

limx→x0
f(x)

limx→x0
g(x)

(4)
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assuming the right hand side has meaning.

The right hand side is meaningful once we do not divide by zero and if there does not appear
indefinite terms, i.e.,

0

0
,
∞
∞

, ∞−∞, 1∞

Note that the arithmetic of limits holds also for the one-sided limits.
Example: Let compute a limit limx→∞

x−1
x−2 . According to arithmetic of limits limx→∞ x−

1 = ∞ and limx→∞ x− 2 = ∞. However, we cannot write that

lim
x→∞

x− 1

x− 2
=

∞
∞

as we get an indefinite term. The solution makes use of limx→∞
1
x = 0. This particular limit is

left as an exercise. So we compute

lim
x→∞

x− 1

x− 2
= lim

x→∞

1− 1
x

1− 2
x

=
1− 0

1− 2 · 0
= 1

where we first multiply the numerator and denominator by 1
x and, second, we use the arithmetic

of limits.

Observation 3.7. Let limx→x0
f(x) = A for some x0 ∈ R and A ∈ R∗. Then also limx→x0− f(x) =

A and limx→x0+ f(x) = A.

Once again, the proof of this observation is postponed to the next section.

Let consider limx→0
1
x . We are going to show that limx→0−

1
x = −∞ and limx→0+

1
x = +∞.

In such case, limx→0
1
x does not exist according to the just mentioned observation.

Let K > 0. We take δ = 1
K and, consequently, for all x ∈ (0, δ) it holds that f(x) = 1

x > 1
δ =

K and limx→0+
1
x = ∞.

Similarly, for all x ∈ (−δ, 0) it holds that f(x) = 1
x < 1

δ = −K and thus limx→0−
1
x = −∞.

Example:

� Let compute limx→0
1
x . First, if x → 0+ then f(x) → ∞. Indeed, for every M > 0 we take

δ < 1
M and 1

x > M whenever x ∈ (0, δ). Similarly, one can deduce that limx→0−
1
x = −∞.

Consequently,

lim
x→0

1

x
does not exist.

� How about limx→0
1
x2 ? In this case we have

lim
x→0+

1

x2

AL
=

(
lim

x→0+

1

x

)2

= ∞ ·∞ = ∞

and

lim
x→0−

1

x2

AL
=

(
lim

x→0−

1

x

)2

= −∞ · −∞ = ∞.

We deduce that

lim
x→0

1

x2
= ∞.
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3.8 Advanced limits

There is precisely one real number e such that

lim
x→0

ex − 1

x
= 1. (5)

This number is called Euler’s number, it is irrational and its value is approximately 2.72.
Thus we also get

lim
x→0

log(x+ 1)

x
= 1

The definition of sinx allows to deduce

lim
x→0

sinx

x
= 0. (6)

Lemma 3.3 (Limit of composed function). Let limx→x0
g(x) = A and limy→A f(y) = B. Then

lim
x→x0

f(g(x)) = B,

if at least one of the following is true:

1. f is continuous at the point A or

2. there is δ such that for all x ∈ (x− δ, x0) ∪ (x0, x+ δ) it holds that g(x) ̸= A.

Now we are allowed to deduce further limits which will be used without any further explana-
tion (here note that the inner function g(x) = x

2 is injective and thus the second assumption of
the previous lemma is fulfilled):

lim
x→0

1− cosx

x2
= lim

x→0

sin2
(
x
2

)
+ cos2

(
x
2

)
− cos2

(
x
2

)
+ sin2

(
x
2

)
x2

= lim
x→0

2 sin2
(
x
2

)
4
(
x
2

)2
=

1

2
lim
x→0

sin
(
x
2

)
x
2

sin
(
x
2

)
x
2

=
1

2
lim
x→0

sin
(
x
2

)
x
2

lim
x→0

sin
(
x
2

)
x
2

=
1

2

Lemma 3.4 (Sandwich Lemma). Let x0 ∈ R and let there is δ > 0 such that

f(x) ≤ g(x) ≤ h(x), ∀x ∈ (x0 − δ, x0) ∪ (x0, x0 + δ).

Then limx→x0
f(x) = limx→x0

h(x) = A implies limx→x0
g(x) = A.

Further limits of elementary functions:

� limx→∞ ax = ∞ for a > 1,

� limx→∞ loga x = ∞ for a > 1,

� limx→0+ loga x = −∞ for a > 1,

� limx→π
2 − tanx = ∞,

� limx→∞ arctanx = π
2 ,
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� limx→∞ arccotx = 0,

� limx→−∞ arccotx = π.

Examples

� Is f(x) =
(
1
x

)
χ[1,∞) +

(
(2x+2)(x−1)
(x+2)(x−1)

)
χ(−∞,1) continuous? First, it is clearly continuous in

ever point of (−∞,−2), (−2, 1), and (1,∞). It is not continuous at x = −2 since this point
does not belong to the domain of f . Next, f(1) = 1 and limx→1− f(x) = 4

3 and thus the
function is not continuous at x = 1.

� And how about f(x) = exχ(−∞,0] +
(

sin(4x)−sin(3x)
4x−3x

)
χ(0,∞)? In this case the function is

clearly continuous everywhere on R\{0}. In zero we have f(0) = e0 = 1 and limx→0+ f(x) =
1 and, therefore, the function is continuous even there.

3.9 Derivative

Consider a graph of a function f(x), for example, of the following form

x

y

f(x)

x1 x2

The equation of the line passing through point ⟨x1, f(x1)⟩ and ⟨x2, f(x2)⟩ is

y =
f(x2)− f(x1)

x2 − x1
(x− x1) + f(x1).

How to make a tangent line? Just simply tend with x2 to x1. So the tangent line has equation

y = k(x− x1) + f(x1)

where

k = lim
x2→x1

f(x2)− f(x1)

x2 − x1

assuming the limit exists. We denote h := x2 − x1 and then we may write

k = lim
h→0

f(x1 + h)− f(x1)

h
.
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Definition 3.18. Let f : R 7→ R. We define

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
.

We say that f ′(x) is a derivative of f at point x.

In particular, a derivative of f in a point x is a slope of the tangent line passing through
⟨x, f(x)⟩.

Let emphasize that f ′ does not exist for every function.

Observation 3.8. Let f ′(x0) is real. Then f is continuous at x0.

Proof. Indeed, it is enough to compute

lim
x→x0

f(x)− f(x0) = lim
x→x0

f(x)− f(x0)

x− x0
(x− x0) = f ′(x0) · 0 = 0.

Consequently, limx→x0
f(x) = f(x0) and the function is continuous at x0.

Let compute several derivatives of elementary functions. First of all, since

an − bn = (a− b)(an−1 + an−2b+ an−3b2 + . . .+ abn−2 + bn−1),

we get for f(x) = xn

lim
h→0

(x+ h)n − xn

h
= lim

h→0

h((x+ h)n−1 + (x+ h)n−2x+ . . .+ (x+ h)xn−2 + xn−1)

h

= lim
h→0

(x+ h)n−1 + (x+ h)n−2x+ . . .+ (x+ h)xn−2 + xn−1 = nxn−1.

Thus, (xn)′ = nxn−1.

Take f(x) = ex.

lim
h→0

ex+h − ex

h
− lim

h→0

ex(eh − 1)

h
= ex lim

h→0

eh − 1

h
= ex.

Consequently, (ex)′ = ex. Consider f(x) = sinx. We compute

lim
h→0

sin(x+ h)− sinx

h
= lim

h→0

sinx cosh+ sinh cosx− sinx

h

= lim
h→0

(
sinh cosx

h
− sinx(1− cosh)

h

)
AL
= cosx lim

h→0

sinh

h
− sinx lim

h→0

1− cosh

h2
h

AL
= cosx

and we deduced that (sinx)′ = cosx.

Let compute derivative of f(x) = cosx:

lim
h→0

cos(x+ h)− cosx

h
= lim

h→0

cosx cosh− sinx sinh− cosx

h

= lim
h→0

(
cosx(cosh− 1)

h
+

− sinx sinh

h

)
.
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Similarly as before we deduce that

(cosx)′ = − sinx.

Finally, let compute a derivative of log x. We have

lim
h→0

log(x+ h)− log x

h
= lim

h→0

log
(
x+h
x

)
h

= lim
h→0

log
(
1 + h

x

)
h

= lim
h→0

log
(
1 + h

x

)
h
x

1

x

LOCF
=

1

x
.

Consequently,

(log x)′ =
1

x
.

Lemma 3.5. Let f and g be differentiable functions. Then

(f(x)± g(x))′ = f ′(x)± g′(x)

(f(x)g(x))′ = f ′(x)g(x) + f(x)g′(x)(
f(x)

g(x)

)′

=
f ′(x)g(x)− f(x)g′(x)

(g(x))2

if both sides have sense.

Proof. The first relation follows directly from the arithmetic of limits. Indeed,

(f(x)± g(x))′ = lim
h→0

f(x+ h)± g(x+ h)− (f(x)± g(x))

h

= lim
h→0

(f(x+ h)− f(x))± (g(x+ h)− g(x))

h

AL
= lim

h→0

f(x+ h)− f(x)

h
± lim

h→0

g(x+ h)− g(x)

h
= f ′(x)± g′(x).

Further,

(f(x)g(x))′ = lim
h→0

f(x+ h)g(x+ h)− f(x)g(x)

h

= lim
h→0

f(x+ h)(g(x+ h)− g(x)) + g(x)(f(x+ h)− f(x)

h

AL
= lim

h→0

f(x+ h)(g(x+ h)− g(x))

h
+ lim

h→0

g(x)(f(x+ h)− f(x))

h

= f(x)g′(x) + f ′(x)g(x)

which is a proof of the second relation.
Finally,(
f(x)

g(x)

)′

= lim
h→0

1

h

(
f(x+ h)

g(x+ h)
− f(x)

g(x)

)
= lim

h→0

1

h

(
f(x+ h)g(x)− g(x+ h)f(x)

g(x+ h)g(x)

)
= lim

h→0

1

g(x+ h)g(x)

(f(x+ h)− f(x)) g(x)− f(x)(g(x+ h)− g(x))

h

=
f ′(x)g(x)− f(x)g′(x)

(g(x))2

which proves the last relation.
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Let compute

(tanx)
′
=

(
sinx

cosx

)′

=
cos2 x+ sin2 x

cos2 x
=

1

cos2 x

and, similarly, we may deduce (cotx)′ = − 1
sin2 x

.
We present the following lemma without a proof. It concern the derivative of composed

functions.

Lemma 3.6. Let f and g be differentiable functions and let b = f(a). Then

(g ◦ f)′(a) = g′(b)f ′(a) = g′(f(a))f ′(a).

So we may use this to compute the derivative of ax:

(ax)′ =
(
ex log a

)′
= ex log a(x log a)′ = log a ex log a = log a ax.

Finally, we may also compute remaining derivatives of elementary functions:

1 = (x)′ = (arctan ◦ tanx)′ = arctan′(tanx) tan′ x.

We thus deduce that arctan′(tanx) = 1
tan′(x) and thus

arctan′(tanx) = cos2 x =
cos2 x

sin2 x+ cos2 x
=

1

1 + sin2 x
cos2 x

=
1

1 + tan2 x

which yield

arctan′(x) =
1

1 + x2
.

The similar computation may be performed also for other cyclometric functions. To sum up, we
present the following table:

f(x) f ′(x) conditions
xn nxn−1 n ∈ R, x as usual
ex ex x ∈ R
ax log a ax a ∈ (0, 1) ∪ (1,∞), x ∈ R
log x 1

x x ∈ (0,∞)
sinx cosx x ∈ R
cosx − sinx x ∈ R
tanx 1

cos2 x x ∈ R \ {π
2 + kπ, k ∈ Z}

cotx − 1
sin2 x

x ∈ R \ {kπ, k ∈ Z}
arctanx 1

1+x2 x ∈ R
arccotx − 1

1+x2 x ∈ R
arcsinx 1√

1−x2
x ∈ (−1, 1)

arccosx − 1√
1−x2

x ∈ (−1, 1)

3.9.1 Mean-value theorems

Lemma 3.7. Let f be defined on an interval (a, b) let it attain its maximum (resp. minimum)
in a point x0 ∈ (a, b), and let f ′(x0) exist. Then f ′(x0) = 0.
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Proof. Let x0 be a point of maximum. For contradiction let f ′(x0) ̸= 0 and without loss of

generality assume f ′(x0) > 0. But then there is δ > 0 such that f(x)−f(x0)
x−x0

> 0 for all x ∈
(x0, x0 + δ). But this means that f(x) > f(x0) which is in contradiction with the very first
assumption.

Lemma 3.8 (Rolle). Let f ∈ C([a, b]) and let f ′ exist for all x ∈ (a, b). Moreover, let f(a) = f(b).
Then there exists a point ζ ∈ (a, b) such that f ′(ζ) = 0.

Proof. For f constant it is enough to take any x ∈ (a, b). Once f is not constant, there is a
point ζ ∈ (a, b) where this function attains its maximum or minimum. According to the previous
lemma, f ′(ζ) = 0.

Lemma 3.9 (Lagrange). Let f ∈ C([a, b]) and let f ′ exists for all x ∈ (a, b). Then there exists
a point ζ ∈ (a, b) such that

f ′(ζ)(b− a) = f(b)− f(a)

Proof. Consider a function F (x) = f(x) − f(a) − f(b)−f(a)
b−a (x − a). This function satisfies all

assumption of the previous lemma (F (a) = F (b) = 0) and thus there is ζ such that F ′(ζ) = 0.
This might be rewritten as

0 = f ′(ζ)− f(b)− f(a)

b− a

which is the desired equality.

3.9.2 The course of function

The derivative helps to further analyze the function. This is the main content of this section.
First of all, the sign of derivative is in correspondence with the monotonicity of function.

Observation 3.9. Let f ∈ C(I) for some interval I ⊂ R. Assume that f ′(x) is exists for all
x ∈ I.

1. If f ′(x) > 0 for all x ∈ I, f(x) is increasing on I.

2. If f ′(x) < 0 for all x ∈ I, f(x) is decreasing on I.

Proof. We prove just the first part as the second part is just an easy modification. Let x, y ∈ I
be arbitrary points such that x < y. According to mean value theorem, there is ζ ∈ (x, y) such
that f ′(ζ)(x−y) = f(x)−f(y). As f ′(ζ) is positive we get f(x) < f(y) which implies the desired
claim.

Definition 3.19. We say that x0 ∈ Dom f is a local maximum of f if there exists δ > 0 such
that f(x) ≤ f(x0) for every x ∈ (x0 − δ, x0 + δ). It is a local minimum of f if there exists δ > 0
such that f(x) ≥ f(x0) for every x ∈ (x0 − δ, x0 + δ).

We define one additional qualitative property of function:

Definition 3.20. We say that f : R 7→ R is convex on a set I ⊂ Dom f if for all x, y, z ∈ I,
x < y < z it holds that

f(y)− f(x)

y − x
<

f(z)− f(y)

z − y
.

We say that f is concave on I if −f is convex on I.
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Observation 3.10. Let f ∈ C(I) for some interval I ⊂ R. Assume that f ′′(x) exists for all
x ∈ I.

1. If f ′′(x) > 0 for all x ∈ I then f is convex on I.

2. If f ′′(x) < 0 for all x ∈ I then f is concave on I.

Proof. It is enough to show that f ′ increasing implies f convex as then the claim follows from
Observation 3.9. Take x, y, z ∈ I, x < y < z. According to mean value theorem there exist

η ∈ (x, y) and ζ ∈ (y, z) such that f ′(η) = f(y)−f(x)
y−x and f ′(ζ) = f(z)−f(y)

z−y . But since f ′ is

increasing and η < ζ we get f ′(η) < f ′(ζ) which implies the convexity of f .
If f ′′(x) < 0 we get (−f)′′(x) > 0 and according to the first part −f is convex. This gives

the second claim.

Definition 3.21. We say that x ∈ R is a point of inflection of f : R 7→ R if f is continuous at
x and there is δ > 0 such that one of the following appears

1. f is concave on (x− δ, x) and convex on (x, x+ δ)

2. f is convex on (x− δ, x) and concave on (x, x+ δ).

Roughly speaking, the point x is a point of inflection if f changes from convex to concave or
vice versa at point x.

Now we are ready to describe the problem of the course of function. The task ’examine the
course of the following function’ consists of the following sub-tasks:

1. To find out the domain, to determine whether the function is even, odd or periodic.

2. To find intersections with axes.

3. To examine the behavior of the function at the edges of the domain.

4. To derive function, to determine sets where the function is increasing and decreasing, to
determine extremes.

5. To differentiate the function for the second time, to determine sets where the function is
concave, convex, to determine points of inflection.

6. To sketch a graph of the function.

Let me comment each of this sub-tasks and let me use a function f(x) = x2+3
x−1 as an example:

1. To determinate the domain one has to be sure that there is no division by 0, that the
square root is taken from the non-negative number and that the argument of logarithm is
positive. In case of the exemplary function we have to exclude the possibility of x− 1 = 0
which means that Dom f = (−∞, 1) ∪ (1,∞). Directly from the domain one may deduce
that this function cannot be even, odd or periodic.

2. The intersections with axis are point of form ⟨0, f(0)⟩ and ⟨x, 0⟩ where x solves f(x) = 0.
In our case we obtain ⟨0,−3⟩ and since

0 =
x2 + 3

x− 1

has no solution there is no intersection with axis x.
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3. We have to evaluate limits on the edges of the domain. Let turn attention to our example.
Since the domain is of the form (−∞, 1) ∪ (1,∞) we have to compute the following four
limits:

lim
x→−∞

x2 + 3

x− 1
= −∞

lim
x→1−

x2 + 3

x− 1
= −∞

lim
x→1+

x2 + 3

x− 1
= ∞

lim
x→∞

x2 + 3

x− 1
= ∞

Besides, we have to examine asymptotes.

Definition 3.22. Let limx→∞
f(x)
x = k+ ∈ R and let limx→∞ f(x)− k+x = q+. Then an

asymptote at ∞ is a line with equation y = k+x+ q+.

Let limx→−∞
f(x)
x = k− ∈ R and let limx→−∞ f(x) − k−x = q−. Then an asymptote at

−∞ is a line with equation y = k−x+ q−.

I our particular case we have:

lim
x→∞

x2 + 3

x− 1

1

x
= 1

lim
x→∞

x2 + 3

x− 1
− x = 1

lim
x→−∞

x2 + 3

x− 1

1

x
= 1

lim
x→−∞

x2 + 3

x− 1
− x = 1.

So there is only line which represents asymptote at ∞ as well as at −∞ and the equation
of that line is

y = x+ 1.

4. We have to differentiate the function and then we have to find all x such that f ′(x) > 0
and all x for which f ′(x) < 0. The points where the monotonicity of the function changes
are extremal points.

Take our exemplary function. We have f ′(x) = x2−2x−3
(x−1)2 . Consequently, f ′(x) > 0 whenever

x ∈ (−∞,−1) and x ∈ (3,∞). Moreover, f ′(x) < 0 for x ∈ (−1, 3) \ {1}. Thus, f is
increasing on (−∞,−1), f is decreasing on (−1, 1), once again it is decreasing on (1, 3) and
f is increasing on (3,∞). We deduce that the local maximum is at point x = −1, its value
is −2, the local minimum is at point x = 3, its value is 6.

5. We do the same as in the previous step but for the second derivative.

Consider our exemplary function. We have f ′′(x) = −4
(x−1)3 . Consequently, f ′′(x) < 0 for

x ∈ (−∞, 1) and f ′′(x) > 0 for x ∈ (1,∞) and f is concave on (−∞, 1) and convex on
(1,∞). If 1 was a point of continuity of f , it would be a point of inflection. However, 1
does not belong to Dom f and thus there is no point of inflection.
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6. Now we are ready to draw a graph using all the information we deduced.

x

y

y = x+ 1

1

(−1,−2)

(3, 6)
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3.9.3 Further use

The derivatives may be further used for computation of approximate values and for computation
of limits. Without a proof, we state here two important concepts (this time we do not provide
any proof):

Lemma 3.10 (l’Hospital). Let f and g have finite derivatives for all x ∈ (a, b) ⊂ R. Assume
g′(x) ̸= 0 and

lim
x→a+

f ′(x)

g′(x)
= A ∈ R∗.

Let moreover one of the following is true:

1. limx→a+ f(x) = 0 and limx→a+ g(x) = 0 or

2. limx→a+ |g(x)| = ∞.

Then

lim
x→a+

f(x)

g(x)
= A.

Definition 3.23 (Taylor’s sum). Let f be n−times differentiable at point x0. Then a polynomial
of the form

Tf,x0,n(x) := f(x0) +
f ′(x0)

1!
(x− x0) +

f ′′(x0)

2!
(x− x0)

2 + . . .+
f (n)

n!
=

n∑
j=0

f (i)

i!
(x− x0)

i

is called the Taylor polynomial to f at point x0 of degree n.

Lemma 3.11. Assume that f is (n+ 1)−times differentiable at x0. Let x ∈ R be arbitrary and
let f is (n+1)−times differentiable on a closed interval I with edges at x0 and x. Then there is
ζ in between of x and x0 such that

f(x)− Tf,x0,n(x) =
f (n+1)(ζ)

(n+ 1)!
(x− x0)

n+1.

4 Functions of multiple variables

4.1 Few words about topology

Definition 4.1. An open ball centered at (x0, y0) ∈ R2 with radius r ∈ (0,∞) is a set

Br(x0, y0) = {(x, y) ∈ R2, ∥(x, y)− (x0, y0)∥ < r}.

Definition 4.2. A set M ⊂ R2 is open if for every (x0, y0) ∈ M there is r > 0 such that
Br(x0, y0) ⊂ M .
A set M is called closed if R2 \M is open.

Example A set M := (0, 1) × (0, 1) is open. Indeed, let (a, b) ∈ M . Define δ = min{a, b, 1 −
a, 1 − b}. Since a ∈ (0, 1) and b ∈ (0, 1) we have δ > 0. Necessarily, Bδ/2(a, b) ⊂ M . On the
other hand, a set M := [0, 1] × (0, 1) is not open. Consider for example a point (1, 1/2) ∈ M .
Then every ball Br(1, 1/2) contains a point (1 + r/2, 1/2) which is outside of M . Note that M
is not closed. Why?
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r

(x0, y0)

Remark 4.1.

� ∅ and R2 are open sets (and closed sets as well),

� a union of open sets is an open set,

� an intersection of two open sets is an open set,

� a union of two closed sets is a closed set,

� an intersection of closed sets is a closed set.

Observation 4.1. Let f : R2 → R be a continuous function. Then f−1(A) is an open set for
every A ⊂ R open. Similarly, f−1(B) is a closed set for every B ⊂ R closed.

Question What is a continuous function? We will see later.
For now: A projection p : R2 → R, p(x, y) = x is a continuous function (as well as projection
q(x, y) = y). A sum, difference and product of two continuous functions are continuous functions.
A quotient of two continuous function is again a continuous function. A composition of two
continuous function is a continuous function.

Example Let consider a set

M := {(x, y), x ∈ (−1, 1), y < x2}.

Is this set open? First, f(x, y) = |x| is a continuous function. Indeed, f(x, y) = |p(x, y)| is a
composition of p and | · |. Thus, f−1((−∞, 1)) = {(x, y) ∈ R2, x ∈ (−1, 1)} is an open set.
Next, g(x, y) = y−x2 is a continuous function. Indeed, g(x, y) = q(x, y)−p(x, y)2. Consequently,
f−1((−∞, 0)) = {(x, y) ∈ R2, y − x2 < 0} = {(x, y) ∈ R2, y < x2}.
Since M = f−1((−∞, 1)) ∩ g−1((−∞, 0)), we deduce that M is open.

Definition 4.3. An interior of set M ⊂ R2 is a set M0 of all points (x0, y0) for which there is
r > 0 such that Br(x0, y0) ⊂ M . Equivalently, it is the biggest open set contained in M .
A closure of a set M ⊂ R2 is a set M defined as M := R2 \ (R2 \M)0. Equivalently, it is the
smallest closed set containing M .
A boundary of a set M is denoted by ∂M and it is defined as M \M0.
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Example Consider M = [0, 1] × (0, 1). Then M0 = (0, 1) × (0, 1) and M = [0, 1] × [0, 1]. We
deduce that

∂M = M \M0 = ([0, 1]× {0, 1}, {0, 1} × [0, 1]) .

Definition 4.4. Let M ⊂ R2. A point (x0, y0) ∈ R2 is a limit point of M if Br(x0, y0)∩M ̸= ∅
for every r > 0.
A point (x0, y0) ∈ M is an isolated point of M if there is r > 0 such that Br(x0, y0) ∩ M =
{(x0, y0)}.

Example Consider a set M := {(x, y) ∈ R, y = 0, x = 1/n, n ∈ N}. We claim, that (0, 0)
is a limit point of M . Indeed, let r > 0. Then there is nr such that nr > 1/r and, clearly,
(1/nr, 0) ∈ M is such point that ∥(1/nr, 0)− (0, 0)∥ < r and thus Br(0, 0) ∩M = (1/nr, 0).

4.2 Introduction to functions

Definition 4.5. Let M ⊂ Rn, n ∈ N be a nonempty set. A real function of multiple vari-
ables defined on a set M is a formula f which assigns a (unique) real number y to every
(x1, x2, . . . , xn) ∈ M . We use the notation

y = f(x1, x2, . . . , xn).

To denote the function itself we use a notation f : M → R. The set M is called a domain of f
and we write M = Dom f .

Remark 4.2. In case n = 2 or n = 3 we use (x, y) or (x, y, z) instead of (x1, x2) or (x1, x2, x3).

Usually, the function will be given only by its formula without any specific domain. In that
case, we assume that the domain is a maximal set for which has the formula sense. For example,
a function

f(x, y) = log(x+ y)

is defined on a set
Dom f = {(x, y) ∈ R2, x+ y > 0}.

Example

� Find (and sketch) a maximal set M ⊂ R2 of such pairs (x, y) for which the function

f(x, y) =
1√

x2 + y − 1
.

Necessarily,
√
x2 + y − 1 > 0 and we deduce that the function has sense for all pairs

satisfying
x2 + y − 1 > 0

which is a part of the plane bounded by certain parabola.

Definition 4.6. Let z = f(x, y) be a function of two variables. The graph of f is a set

graphf = {(x, y, f(x, y) ∈ R3, (x, y) ∈ Dom f}.

Definition 4.7. A contour line C at height z0 ∈ R is a set

{(x, y) ∈ R2, f(x, y) = z0}.
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Example

� Find contour lines at heights z0 = −2,−1, 0, 1, 2 for a function

f(x, y) =
x2 + y2

2x
.

First of all, the domain of this function does not contain the y axis.
Take z0 = −2. Then f(x, y) = −2 yields (x + 2)2 + y2 = 4 and the contour line is the
circle centered at (−2, 0) with radius r = 2 which do not contain the origin (because of the
domain of f).
Similarly, For z0 = −1 we get the circle centered at (−1, 0) with radius r = 1 which do not
contain the origin.
The countour line at height z0 = 0 is empty. For z0 = 1 we get the circle centered at (1, 0)
with radius r = 1 not containing the origin.
And finally, for z0 = 2 the contour line is a circle of radius r = 2 with center at (2, 0) with
exception of the origin.

Definition 4.8. Let M ⊂ Rn and f : M → R. Next, let φ : I → M is a curve (I ⊂ R is an
interval). Then f ◦ φ is a cross-section of f along φ.

Examples

� What is the graph of a function

f(x, y) = (x+ y)2

on a line pa : (x, y) = (a, 0) + t(1, 1), t ∈ R for some a ∈ R? And how about lines
qb : (x, y) = (b, 0) + t(1,−1), t ∈ R for some b ∈ R ?

First,
f(a+ t, t) = (a+ 2t)2

and the graph of f along line pa is a convex parabola with vertex in t0 = −a
2 .

Next,
f(b+ t,−t) = (b)2

and the graph is a horizontal line at height b2.

� Lets find the graph of a cross-section

f(x, y) =
1

x2 + y2

along lines
(x, y) = t(cosα, sinα), t ∈ (0,∞)

where α ∈ [0, 2π) is a parameter. The function g = f ◦ φ is given as

g(t) = f(t cosα, t sinα) =
1

t2(cos2 α+ sin2 α)
=

1

t2
.

Similarly as above, the sketch of the graph remains as an exercise for the kind reader.

Algebra of functions of two variables:
Sum, product and division is defined ’pointwisely’. Consider, for example, functions f(x, y) = exy

and g(x, y) =
√
1− x2 − y2. Then
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� (f + g)(x, y) = exy +
√

1− x2 − y2,

� (fg)(x, y) = exy
√
1− x2 − y2,

�
f
g (x, y) =

exy√
1−x2−y2

. Beware, here we have to exclude from the domain all points where g

equals zero.

Composition of functions: Let M ⊂ Rm, f : M → Rn (this means that there are n functions
fi : M → R, i ∈ {1, . . . , n}) and g : Rn 7→ R. Then a composition is a function h = g ◦ f defined
as

h(x1, . . . , xm) = g(f1(x1, . . . , xm), f2(x1, . . . , xm), . . . , fn(x1, . . . , xm)).

Similarly, if f : M 7→ R and g : R 7→ R then h = g ◦ f is defined as h(x1, . . . , xm) =
g(f(x1, . . . , xm))

We can also introduce the boundedness of a function f : M ⊂ Rn → R. This can be done
similarly to the one dimensional case. The precise definition of a bounded function is left as an
exercise.

4.3 Continuity

Definition 4.9. We say that f : M 7→ R is continuous at a point (x0, y0) ∈ M if

∀ε > 0, ∃δ > 0, ∀(x, y) ∈ (M ∩Bδ(x0, y0)) , |f(x, y)− f(x0, y0)| < ε.

Let N ⊂ M and let f : M 7→ R be continuous at all points (x0, y0) ∈ N . Then we say that f is
continuous on N . If f is continuous on Dom f then we simply say that f is continuous.

Observation 4.2. Let f1 and f2 be continuous functions. Then

f1 + f2, f1 − f2 and f1f2

are continuous function. Moreover, f1
f2

is a continuous function on a set {(x, y) ∈ R2, f2(x, y) ̸=
0}. Further, f1 ◦ f2 is also a continuous function. We remind that f(x, y) = x and f(x, y) = y
are continuous function.

Example

� A function

f(x, y) =
x+

√
x+ y

1 + cos2 x
wherever it is correctly defined, this means a set

{(x, y) ∈ R2, y > −x}.

4.4 Limits

Definition 4.10. Let (x0, y0) be a limit point of M ⊂ R2 and let f : M 7→ R. We say that a
limit of f at the point (x0, y0) is A ∈ R if

∀ε > 0, ∃δ > 0, ∀(x, y) ∈ (M ∩Bδ(x0, y0)), |f(x, y)−A| < ε.

We write lim(x,y)→(x0,y0) f(x, y) = A.
We say that a limit of f at the point (x0, y0) is ∞ if

∀M > 0, ∃δ > 0, ∀(x, y) ∈ (M ∩Bδ(x0, y0)), f(x, y) > M.

We write lim(x,y)→(x0,y0) f(x, y) = ∞.
We say that a limit of f at the point (x0, y0) is −∞ if lim(x,y)→(x0,y0) −f(x, y) = −∞.
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Observation 4.3 (Arithmetic of limits). Let f and g be two functions and let (x0, y0) be a limit
point of Dom f and of Dom g. Then

lim
(x,y)→(x0,y0)

(f + g)(x, y) = lim
(x,y)→(x0,y0)

f(x, y) + lim
(x,y)→(x0,y0)

g(x, y)

lim
(x,y)→(x0,y0)

fg(x, y) = lim
(x,y)→(x0,y0)

f(x, y) lim
(x,y)→(x0,y0)

g(x, y)

lim
(x,y)→(x0,y0)

f

g
(x, y) =

lim(x,y)→(x0,y0) f(x, y)

lim(x,y)→(x0,y0) g(x, y)
.

assuming the right hand side is well defined.

The numbers ∞−∞, 0 ·∞, 0
0 ,

∞
∞ are not well defined (similarly to the one dimensional case).

Observation 4.4. A function f is continuous at point (x0, y0) ∈ Dom f if and only if lim(x,y)→(x0,y0) f(x, y) =
f(x0, y0).

Example

� Consider a function

f(x, y) =
x2y2

x2y2 + (x− y)2
.

This function is not defined at (0, 0). It is possible to define the value f(0, 0) in such a way
that f is continuous? In particular, does there exists a finite limit

lim
(x,y)→(0,0)

f(x, y)?

First, we approach (0, 0) along the line y = 0. We have

lim
(x,0)→(0,0)

f(x, 0) = lim
x→0

0

x2
= 0.

Next, we approach (0, 0) along the line x = y. We have

lim
(x,x)→(0,0)

f(x, x) = lim
x→0

x4

x4
= 1.

As a result, lim(x,y)→(0,0) f(x, y) does not exist.

Lemma 4.1 (Sandwich lemma). Let f, g, h be three functions defined on Bδ(x0, y0) \ {(x0, y0)}
for some δ > 0. Assume

∀(x, y) ∈ Bδ(x0, y0) \ {(x0, y0)}, g(x, y) ≤ f(x, y) ≤ h(x, y).

If lim(x,y)→(x0,y0) g(x, y) = lim(x,y)→(x0,y0) h(x, y) = A ∈ R then also

lim
(x,y)→(x0,y0)

f(x, y) = A.

Corollary 4.1. lim(x,y)→(x0,y0) |f(x, y)| = 0 ⇒ lim(x,y)→(x0,y0) f(x, y) = 0.

Example
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� Compute

lim
(x,y)→(0,0)

xy√
x2 + y2

.

We use notation f(x, y) = xy√
x2+y2

. First of all, we have limx→0 f(x, 0) = 0 and limy→0 f(0, y) =

0. Thus, if there is a limit, it is equal to 0. We use the well known AM-GM inequality
(2|xy| ≤ (x2 + y2)) to deduce

0 ≤ |xy|√
x2 + y2

≤ x2 + y2√
x2 + y2

=
√
x2 + y2 → 0

as (x, y) → 0. The sandwich lemma yields lim(x,y)→(0,0) |f(x, y)| = 0 and we have just
proven that the given limit is equal to 0.

4.5 Derivatives

Definition 4.11. Let f : M ⊂ Rn → R and v ∈ Rn be such that ∥v∥ = 1. Let x0 ∈ M0. The
derivative of f with respect to direction v in a point x0 is

Df(x0, v) = g′(t)|t=0 where g(t) = f(x0 + tv)

Remark 4.3. The direction of an arbitrary vector v is a unit vector v
∥v∥ .

Examples

� What is the direction of a line p : (x, y) = (2,−1)+ t(1, 3)? The size of (1, 3) is
√
12 + 32 =√

10. Consequently, the direction of the line is
(

1√
10
, 3√

10

)
.

� Let f(x, y) = x2ey. Let compute Df
(
(1, 0),

(
1√
2
, 1√

2

))
. The line p(t) passing through

(1, 0) with the demanded direction has expression

p(t) =

(
1 +

t√
2
,

t√
2

)
.

Thus

Df

(
(1, 0),

(
1√
2
,
1√
2

))
=

((
1 +

t√
2

)2

e
t√
2

)′∣∣∣∣∣
t=0

= 1

Definition 4.12. We define partial derivatives with respect to xi as

∂f

∂xi
(x0) = lim

h→0

f(x0 + hei)− f(x0)

h
.

where ei is the vector whose i−th component is 1 and all other components are zero.

Remark 4.4. It holds that

∂f

∂x
(x, y) = Df((x, y), (1, 0)),

∂f

∂y
(x, y) = Df((x, y), (0, 1))

whenever f is a function of two variables. Similarly, one can deduce the same rule also for a
function of n variable.
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Definition 4.13. Let x0 ∈ Dom f ⊂ Rn. A vector of first partial derivatives

∇f(x0) =

(
∂f

∂x1
(x0), . . . ,

∂f

∂xn
(x0)

)
is called the gradient of f at x0.

Example

� Let compute ∂f
∂x and ∂f

∂y for a function

f(x, y) = 3x2y + x2 + log(x2 + y2).

Let first compute ∂f
∂x . In that case we treat y as a constant and we deduce that

∂f

∂x
= 6xy + 2x+

2x

x2 + y2
.

In order to compute ∂f
∂y we treat x as a constant and we get

∂f

∂y
= 3x2 +

2y

x2 + y2
.

We remark that in this case we have

∇f(x, y) =

(
6xy + 2x+

2x

x2 + y2
, 3x2 +

2y

x2 + y2

)
.

Definition 4.14. We define second order partial derivatives as follows

∂2f

∂x2
i

=
∂

∂xi

(
∂f

∂xi

)
,

∂2f

∂xi∂xj
=

∂

∂xi

(
∂f

∂xj

)
whenever i, j ∈ {1, . . . , n}, i ̸= j. Analogously we define the third and higher order partial
derivatives. The matrix of second derivatives

(∇2f) =

(
∂

∂xi

∂f

∂xj

)n

i,j=1

is called the Hess matrix.

Example

� Let compute the first and second order derivatives for f(x, y) = x
y − exy. We have

∂f

∂x
=

1

y
− yexy,

∂f

∂y
= − x

y2
− xexy

∂2f

∂x2
= −y2exy,

∂2f

∂y∂x
= − 1

y2
− exy − xyexy

∂2f

∂y2
= 2

x

y3
− x2exy,

∂2f

∂x∂y
= − 1

y2
− exy − xyexy.

The corresponding Hess matrix is

∇2f =

( −y2exy − 1
y2 − exy − xyexy

− 1
y2 − exy − xyexy 2 x

y3 − x2exy

)
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Observation 4.5. Let the second order derivative of a function f be continuous. Then

∂2f

∂x∂y
=

∂2f

∂y∂x
.

Theorem 4.1 (Chain rule – derivative of a composed function). Let n = 1 or 2 and let f :
Rn → R2 and g : R2 → R. Then

∂(g ◦ f)
∂xi

=
∂g

∂y1

∂f1
∂xi

+
∂g

∂y2

∂f2
∂xi

, i = {1, n}.

Example

� Let f(x) = g(sinx, cosx). Then

∂f

∂x
=

∂g

∂a
cosx− ∂g

∂b
sinx

where we use a notation g = g(a, b).

� Let f(x, y) =
√

x2 − y2 and let x = x(t) = e2t and y = e−t. Let compute ∂f(x(t),y(t))
∂t :

∂f(x(t), y(t))

∂t
=

∂f

∂x

∣∣∣∣
(x(t),y(t))

∂x(t)

∂t
+

∂f

∂y

∣∣∣∣
(x(t),y(t))

∂y(t)

∂t

=
x√

x2 − y2

∣∣∣∣∣
(e2t,e−t)

2e2t +
−y√
x2 − y2

∣∣∣∣∣
(e2t,e−t)

(−e−t) =
2e4t + e−2t

√
e4t − e−2t

.

4.6 Differential

Consider a function f : R2 → R. We try to compute an increment of a function if we move from
the point (x0, y0) to the point (x0 + h, y0 + k), i.e., ∆f(x0, y0) = f(x0 + h, y0 + k)− f(x0, y0). It
can be written as

∆f(x0, y0) = f(x0 + h, y0 + k)− f(x0 + h, y0) + f(x0 + h, y0)− f(x0, y0).

Assuming |h| and |k| are sufficiently small we can us an approximation

f(x0 + h, y0 + k)− f(x0 + h, y0) ∼
∂f

∂x
(x0 + h, y0)k

f(x0 + h, y0)− f(x0, y0) ∼
∂f

∂y
(x0, y0)h

Moreover, ∂f
∂x (x0 + h, y0) ∼ ∂f

∂x (x0, y0) if
1 f ∈ C1. This yields

f(x0 + h, y0 + k)− f(x0, y0) ∼
∂f

∂x
(x0, y0)h+

∂f

∂y
(x0, y0)k.

We denote by dx the change in the x coordinate and dy the change in the y coordinate.

1Here f ∈ C1 means that f has continuous first partial derivatives.
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Definition 4.15. Let f ∈ C1. Then

df(x0, y0) =
∂f

∂x
(x0, y0)dx+

∂f

∂y
(x0, y0)dy

is called the differential of f at the point (x0, y0).

The differential of a function can be used to determine approximate values. Let for exam-
ple determine

√
(0.03)2 + (2.89)2. Consider a function f(x, y) =

√
x2 + y2. We have ∇f =(

x√
x2+y2

, y√
x2+y2

)
. We choose x0 = 0 and y0 = 3. We have dx = 0.03 and dy = −0.11. It

holds that √
(0.03)2 + (2.89)2 ∼

√
02 + 32 + 0 · 0.03 + 1 · (−0.11) = 2.89

Remark 4.5. It is worth to mention that df(x0, y0) = ∇f(x0, y0) · (dx, dy). This allows to
generalize the above notion also for functions of more variables. In particular, if f : Rn → R,
then2

df = ∇f · (dx1,dx2, . . . ,dxn).

Definition 4.16. Let f : R2 → R have continuous partial derivatives at point (x0, y0). Then the
tangent plane of the graph of f at point (x0, y0) is a plane with equation

z = f(x0, y0) +∇f(x0, y0) · (x− x0, y − y0).

Example

� Let compute a tangent plane of the graph of f at point (1, 2) for f(x, y) =
√
9− x2 − y2.

We have

∇f(x, y) =

(
− x√

9− x2 − y2
,− y√

9− x2 − y2

)
and ∇f(1, 2) = (−1/2,−1). Thus, the tangent plane is

z = 2− 1/2(x− 1)− 1(y − 2) = 9/2− x/2− y.

4.7 The Taylor polynomial

An approximation by a differential is deduced above. In particular

f(x, y) ∼ f(x0, y0) +
∂f

∂x
(x− x0) +

∂f

∂y
(y − y0). (7)

Recall that we use it to compute
√
(0.03)2 + (2.89)2.

The above considerations leads to the definition of the first-order Taylor polynomial at a point
(x0, y0) as

3

T1(x, y) = f(x0) +∇f(x0) · (x− x0)

whenever f : Rn → R. If f is a function of two variables then the graph of T1 is also a tangent
plane to the graph of the function f at the point (x0, y0) and it is the only plane which is the
best approximation of the function near the point (x0, y0).

2And here u ·v is a scalar multiplication of two vectors with same dimension. It can be understood as a matrix
multiplication u · vT .

3As above, ∇f(x0) · (x − x0) is a scalar product and it can be seen as a multiplication of two matrices, in
particular, ∇f(x, y) · (x− x0)T .
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Definition 4.17. Let f : M ⊂ Rn → R and x0 ∈ M . We define the second order Taylor
polynomial at a point x0 as

T2(x) = f(x0) +∇f(x0) · (x− x0) +
1

2
(x− x0)(∇2f(x0))(x− x0)

T .

Let us just remind that the last term is actually the quadratic form considered in Chapter
2.7
Examples

� Let compute the second order Taylor polynomial of f(x, y) =
√
9− x2 − y2 (the function

from the previous exercise) at (1, 2). First, we have

∇2f(x, y) =


−
√

9−x2−y2+ x2√
9−x2−y2

9−x2−y2 − xy√
9−x2−y2

3

− xy√
9−x2−y2

3

−
√

9−x2−y2+ y2√
9−x2−y2

9−x2−y2

 .

Therefore

∇2f(1, 2) =

(−3
8 −1
−1 0

)
and thus

T2(x) = f(1, 2) +∇f(1, 2) · (x− 1, y − 2) +
1

2
(x− 1, y − 2)(∇2f(1, 2))(x− 1, y − 2)

= 2 +

(
−1

2
,−1

)
· (x− 1, y − 2) +

1

2
(x− 1, y − 2)

(−3
8 −1
−1 0

)
(x− 1, y − 2)

= 2− 1

2
x+

1

2
− y + 2 +

1

2

(
−3

8
(x− 1)2 − 2(x− 1)(y − 2)

)
.

� We compute an approximate value
√
(0.03)2 + (2.89)2 with the help of the second order

Taylor polynomial. We choose (x0, y0) = (0, 3) and we use notation f(x, y) =
√
x2 + y2.

We have ∂f
∂x = x√

x2+y2
, ∂f

∂y = y√
x2+y2

, ∂2f
∂x2 = y2

(x2+y2)3/2
, ∂2f

∂y2 = x2

(x2+y2)3/2
, ∂2f

∂x∂y =

−xy
(x2+y2)3/2

. We deduce that T2 at (0, 3) is

T2(x, y) = 3 + (y − 3) +
1

6
x2

We get T2(0.03, 2.89) = 3 + (−0.11) + 1
60.0009 = 2.89015.

4.8 Implicit functions

Consider a set
{(x, y) ∈ R2, x2 + y2 = 1}

The equation x2 + y2 = 1 defines two function y1(x) and y2(x) where

y1(x) =
√
1− x2, Dom y1(x) = [−1, 1],

y2(x) = −
√

1− x2, Dom y2(x).
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What if it is impossible to express y? Consider an equation

f(x, y) = 0.

What assumptions should be imposed in order to get uniquely defined function y(x)?

Theorem 4.2. Let f : R2 → R and (x0, y0) ∈ R2 be given. If

i) f ∈ Ck for some k ∈ N,

ii) f(x0, y0) = 0,

iii) ∂f
∂y (x0, y0) ̸= 0,

Then there is a uniquely determined function y(x) of class Ck on a neighborhood of point x0 such
that f(x, y(x)) = 0 (precisely, there is ϵ > 0 and a function y(x) defined on (x0 − ε, x0 + ε) such
that f(x, y(x)) = 0.

Example Consider an equation

x3 + y3 − 3xy − 3 = 0.

Is there a function y(x) determined by the given equation on the neighborhood of a point (1, 2)?
According to the previous theorem, we have to verify three assumptions:
1, the function f(x, y) = x3 + y3 − 3xy − 3 should belong (at least) to C1. That is true since
f(x, y) is a polynomial.
2, f(1, 2) should be equal to zero (or, equivalently, the given equation should be satisfied at the
given point). This is also true.
3, ∂f

∂y = 3y2 − 3x and therefore ∂f
∂y (1, 2) = −3 ̸= 0 and the last assumption is also true.

As a result, there is a function y(x) uniquely determined by the given equation in some neigh-
borhood of point x = 1, y = 2.

Note that the last assumption in the implicit function theorem cannot be omited. Consider the
first equation

x2 + y2 = 1

and let decide whether there is a function y(x) given by that equation at the point (1, 0). Ac-
cording to the picture, it is impossible (recall the vertical line test). The theorem may not be
applied. Take f(x, y) = x2 + y2 − 1. We have

∂f

∂y
= 2y,

∂f

∂y
(1, 0) = 0
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and the third assumption is not fulfilled.
Or another example, consider a set

{(x, y) ∈ R2, x2 − y2 = 0}.

Is this set a graph of some function around a point (0, 0)? Once again, we have f(x, y) = x2−y2,
∂f
∂y = −2y and the last assumption of the implicit function theorem is not fulfilled.

Further analysis of the implicitly given function
In order to examine further qualitative properties of the given function we have to compute
derivatives at the given points. The easiest method is to differentiate the given equation with
respect to x (and to assume that y is in fact a function of x).
Example: Consider an equation

e2x + ey + x+ 2y − 2 = 0.

This defines on a neighborhood of (0, 0) a function y(x). Indeed, let f(x, y) = e2x+ey+x+2y−2.
Then f is of class Ck for every k ∈ N, f(0, 0) = 0 and ∂f

∂y = ey +2 which yields ∂f
∂y (0, 0) = 3 ̸= 0.

Let compute y′′′(0) (note that the third derivative exists as f ∈ C3).
Let differentiate the equation with respect to x. We have

2e2x + eyy′ + 1 + 2y′ = 0

and we plug here x = 0 and y = 0 in order to get

2 + y′(0) + 1 + 2y′(0) = 0

which yields y′(0) = −1.
We differentiate once again with respect to x to get

4e2x + eyy′2 + eyy′′ + 2y′′ = 0

and we plug here x = 0, y = 0 and y′ = −1. We get

4 + 1 + 3y′′(0) = 0

yielding y′′(0) = − 5
3 . We differentiate the equation for the third time in order to get

8e2x + eyy′3 + ey2y′y′′ + eyy′y′′ + eyy′′′ + 2y′′′ = 0

and once again we plug there x = 0, y = 0, y′ = −1 and y′′ = − 5
3 . We get

8− 1 +
10

3
+

5

3
+ 3y′′′ = 0

which gives
y′′′(0) = −4.

In particular, we may write

0 =
∂f(x, y(x))

∂x
=

∂f(x, y)

∂x
+

∂f(x, y)

∂y

∂y

∂x

which gives

y′(x0) = −
∂f
∂x (x0, y0)
∂f
∂y (x0, y0)

.

57



4.9 Extremes

Similarly to the one-dimensional case, we talk about local and global extremes.

Definition 4.18. Let f : M ⊂ Rn → R. We say that f attains a local maximum at a point
x0 ∈ M0 if there is r > 0 such that f(x0) ≥ f(x) for all x ∈ Br(x0).
We say that f attains a local minimum at a point x0 ∈ M0 if there is r > 0 such that f(x0) ≤ f(x)
for all x ∈ Br(x0).

Definition 4.19. Let f : M ⊂ Rn → R. We say that f attains its maximum on M at a point
x0 ∈ M if f(x0) ≥ f(x) for all x ∈ M . Similarly, f attains its minimum on M at a point
x0 ∈ M if f(x0) ≤ f(x) for all x ∈ M .

4.9.1 Local extremes

Assume f ∈ C1. Let f has a local extrem at (x0, y0). Then g(x) = f(x, y0) has also a local
extreme at x0 and, therefore, g′(x0) = 0. Similarly, h(y) = f(x0, y) has a local extreme at y0
and thus h′(y0) = 0. This leads to the following observation.

Observation 4.6. Let f ∈ C1 have a local extreme at x0. Then ∇f(x0) = 0.

Definition 4.20. A point x0 ∈ Dom f such that ∇f(x0) = 0 is called a stationary point.

How to find all local extremes of given function?
Step 1: determine the stationary point.
Step 2: examine the possible extremes in the stationary point.
Reminder: in the one-dimensional case one has to treat the sign of the second derivative in order
to decide if there is an extreme in a stationary point.

Example Let find all stationary points of f(x, y) = x2 − y2. We have ∇f(x, y) = (2x,−2y) and
therefore the only stationary point is (x0, y0) = (0, 0). Is there a maximum or minimum?

Observation 4.7. Let f ∈ C2 and let x0 be its stationary point. Then:

1. If ∇2f is positive definite, then f attains a local minimum at x0,

2. If ∇2f is negative definite, then f attains a local maximum at x0.

3. If ∇2f is indefinite, then f does not have an extreme at x0 (saddle point).

4. Otherwise, we do not know anything.

Example: Let go back to f(x, y) = x2−y2. We already know that (x0, y0) = (0, 0) is a stationary
point. We have

∇2f =

(
2 0
0 −2

)
.

Thus det∇2f(0, 0) = −4 and there is no extreme at (0, 0).

Another example Determine all local extremes of

f(x, y) = x3 + 3xy2 − 15x− 12y.

Step 1, stationary points:

∇f(x, y) = (3x2 + 3y2 − 15, 6xy − 12)
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and we stationary points are solutions to

3x2 + 3y2 − 15 = 0

6xy − 12 = 0

which is equivalent to

x2 + y2 − 5 = 0

xy = 2.

We deduce from the second equation that x and y are different from zero. The second equation
yields x = 2

y . We plug this into the first equation to deduce

4

y2
+ y2 − 5 = 0

which is equivalent to
y4 − 5y2 + 4 = 0.

We have y2 = 4, y2 = 1 and therefore there are four stationary points

A = (−1,−2), B = (1, 2), C = (2, 1), D = (−2,−1).

Step 2: We have

∇f =

(
6x 6y
6y 6x

)
Further,

∇2f(A) =

(
−6 −12
−12 −6

)
, det∇2f(A) = −108

and A is a saddle point.

∇2f(B) =

(
6 12
12 6

)
, det∇2f(B) = −108

and B is a saddle point.

∇2f(C) =

(
12 6
6 12

)
, det∇2f(C) = 108

and C is a point of a local minimum. The value of the local minimum is f(C) = −28.

∇2f(D) =

(
−12 −6
−6 −12

)
, det∇2f(D) = 108

and D is a point of a local maximum. The value of the local maximum is f(D) = 28.

The least square method
We will solve the following exercise: Assume that the cost of a car (of one given type) depends
linearly on its age, i.e.,

y = ax+ b, a, b ∈ R,
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where y is the price of a car and x is its age.
Our aim now is to determine this function (constants a and b) from the given sets of data. Below
we have a table of particular cars (their price does not follow strictly the above rule since the
price come from the free market)

x 2 3 3 3 4 4 5 5 6
y 28.7 24.8 26.0 30.5 23.8 24.6 23.8 20.4 22.1

To find the line which fits best to the given data, we use the least squares method. This
means that we are going to minimize the ’distance’ between the line ax+ b and the given data.
We define such distance as sum of squares:

x

y (x1, y1)

(x1, ax1 + b)

|y1 − ax1 − b|

|y1 − ax1 − b|2 + |y2 − ax2 − b|2 + . . .+ |yn − axn − b|2 =

n∑
i=1

|yi − axi − b|2.

This sum of squares in infact a function f of variables a and b of the form

f(a, b) =

n∑
i=1

(yi − axi − b)2

and we are going to minimize this sum of squares. We compute the partial derivative

∂f

∂a
= −2

n∑
i=1

(yi − axi − b)xi,
∂f

∂b
= −2

n∑
i=1

(yi − axi − b).

and we deduce that the stationary point of this function has to fulfill

n∑
i=1

(yi − axi − b)xi = 0

n∑
i=1

(yi − axi − b) = 0.
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Recall that unknowns are a and b. We reformulate this into(
n∑

i=1

x2
i

)
a+

(
n∑

i=1

xi

)
b =

n∑
i=1

xiyi(
n∑

i=1

xi

)
a+ nb =

n∑
i=1

yi.

Recall our example

x 2 3 3 3 4 4 5 5 6
y 28.7 24.8 26.0 30.5 23.8 24.6 23.8 20.4 22.1

where we have

n = 9,

9∑
i=1

xi = 35,

9∑
i=1

x2
i = 149,

9∑
i=1

yi = 224.7,

9∑
i=1

xiyi = 848.5.

We and up with equation

149a+ 35b = 848.5

35a+ 9b = 224.7

which has (approximate) solution

a = −2.02, b = 32.8.

Thus, the desired line has equation

y = −2.02x+ 32.8
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bounded function, 26

Cartesian product, 5
characteristic polynomial, 21
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derivative with respect to direction, 52
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eigenvector, 21
elementary transformation, 14
even function, 29
exponential function, 30
extreme with respect to set, 59

function, 25
function of multiple variables, 48

Gauss elimination method, 15
generalized eigenvector, 23
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gradient, 53
graph, 27
graph of function, 48

higher order partial derivatives, 53

identity matrix, 17
increasing function, 28
indefinite terms, 36
indicator function, 26
infimum, 7
injection, 26
interior, 47
intersection, 5
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inverse function, 26
inverse matrix, 18
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leading coefficient, 15
limit of a function, 50
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limit of function, 34, 35
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list of derivatives, 41
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mathematical induction, 8
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non-increasing function, 28

odd function, 29
one-sided limit, 35
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open ball, 46
open set, 46

partial derivatives, 52
period, 28
periodic function, 28
pivot, 15
point of inflection, 43
Polynomials, 30
positive-definite matrix, 24
proposition, 4

quadratic form, 23
quantifiers, 5

range, 25
rank, 14
rational function, 30
regular matrix, 18

Sandwich Lemma, 37
sine, 33
singular matrix, 18
square matrix, 17
stationary point, 59
subset, 6
subspace, 10
supremum, 7
surjection, 26
symmetric matrix, 14

tangens, 33
Taylor polynomial, 56
the Taylor polynomial, 46
totally ordered set, 6
triangle inequality, 28

union, 5

vector, 9
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