Math, Functions

Václav Mácha
University of Chemistry and Technology

Basic notions

Definition of a function

Let $f \subset(X \times Y)$ be such that $\forall x \in X, \forall y_{1}, y_{2} \in Y,\left(\left(\left\langle x, y_{1}\right\rangle \in f\right) \&\left(\left\langle x, y_{2}\right\rangle \in f\right)\right) \Rightarrow\left(y_{1}=y_{2}\right)$.

Basic notions

Definition of a function

Let $f \subset(X \times Y)$ be such that $\forall x \in X, \forall y_{1}, y_{2} \in Y,\left(\left(\left\langle x, y_{1}\right\rangle \in f\right) \&\left(\left\langle x, y_{2}\right\rangle \in f\right)\right) \Rightarrow\left(y_{1}=y_{2}\right)$. Then we say that f is a function which maps X to Y, we write $f: X \rightarrow Y$. A usual notation for $\langle x, y\rangle$ is $f(x)=y$ or $f: x \mapsto y$.

Basic notions

Definition of a function

Let $f \subset(X \times Y)$ be such that $\forall x \in X, \forall y_{1}, y_{2} \in Y,\left(\left(\left\langle x, y_{1}\right\rangle \in f\right) \&\left(\left\langle x, y_{2}\right\rangle \in f\right)\right) \Rightarrow\left(y_{1}=y_{2}\right)$. Then we say that f is a function which maps X to Y, we write $f: X \rightarrow Y$. A usual notation for $\langle x, y\rangle$ is $f(x)=y$ or $f: x \mapsto y$.
A domain is a set of all $x \in X$ for which there exists y such that $f(x)=y$. The domain of f is denoted by $\operatorname{Dom} f$. The set of all $y \in Y$ for which there exists $x \in X$ such that $f(x)=y$ is called range and it is denoted by $\operatorname{Ran} f$.

Basic notions

Definition of a function

Let $f \subset(X \times Y)$ be such that $\forall x \in X, \forall y_{1}, y_{2} \in Y,\left(\left(\left\langle x, y_{1}\right\rangle \in f\right) \&\left(\left\langle x, y_{2}\right\rangle \in f\right)\right) \Rightarrow\left(y_{1}=y_{2}\right)$. Then we say that f is a function which maps X to Y, we write $f: X \rightarrow Y$. A usual notation for $\langle x, y\rangle$ is $f(x)=y$ or $f: x \mapsto y$.
A domain is a set of all $x \in X$ for which there exists y such that $f(x)=y$. The domain of f is denoted by $\operatorname{Dom} f$. The set of all $y \in Y$ for which there exists $x \in X$ such that $f(x)=y$ is called range and it is denoted by $\operatorname{Ran} f$.
Examples: $\{\langle 1,1\rangle,\langle 1,2\rangle\}$ is not a function - the 'input' 1 has two possible outputs 1 and 2 .

Basic notions

Definition of a function

Let $f \subset(X \times Y)$ be such that
$\forall x \in X, \forall y_{1}, y_{2} \in Y,\left(\left(\left\langle x, y_{1}\right\rangle \in f\right) \&\left(\left\langle x, y_{2}\right\rangle \in f\right)\right) \Rightarrow\left(y_{1}=y_{2}\right)$.
Then we say that f is a function which maps X to Y, we write $f: X \rightarrow Y$. A usual notation for $\langle x, y\rangle$ is $f(x)=y$ or $f: x \mapsto y$.
A domain is a set of all $x \in X$ for which there exists y such that $f(x)=y$.
The domain of f is denoted by $\operatorname{Dom} f$. The set of all $y \in Y$ for which there exists $x \in X$ such that $f(x)=y$ is called range and it is denoted by $\operatorname{Ran} f$.
Examples: $\{\langle 1,1\rangle,\langle 1,2\rangle\}$ is not a function - the 'input' 1 has two possible outputs 1 and 2.
The set $f=\{\langle 1,1\rangle,\langle 2,0\rangle,\langle 3,5\rangle\}$ is a function. It can be also written as $f(1)=1, f(2)=0$ and $f(3)=5$. It holds that $\operatorname{Dom} f=\{1,2,3\}$ and $\operatorname{Ran} f=\{0,1,5\}$.

Let $A \subset \operatorname{Dom} f$. An image of A (denoted by $f(A))$ is a set defined as $f(A)=\{y \in \operatorname{Ran} f, \exists x \in A, y=f(x)\}$
Let $B \subset \operatorname{Ran} f$. A preimage of B (denoted by $f^{-1}(B)$) is a set defined as $f^{-1}(B)=\{x \in \operatorname{Dom} f, \exists y \in B, y=f(x)\}$
Mention, please, that f^{-1} is still undefined (it will be done in a few minutes). In particular, $f^{-1}(B)$ has different meaning than $f^{-1}(y)$, $y \in \operatorname{Ran} f$.

Observation: For every $A, B \subset \operatorname{Dom} f$ it holds that $f(A \cup B)=f(A) \cup f(B)$.

Observation: For every $A, B \subset \operatorname{Dom} f$ it holds that $f(A \cup B)=f(A) \cup f(B)$.
Proof: It holds that

$$
\begin{aligned}
(y \in f(A \cup B)) & \Rightarrow(\exists x \in(A \cup B), y=f(x)) \\
& \Rightarrow((\exists x \in A, y=f(x)) \vee(\exists x \in B, y=f(x))) \\
& \Rightarrow((y \in f(A)) \vee(y \in f(B))) \Rightarrow(y \in f(A) \cup f(B))
\end{aligned}
$$

and we have just proven that $f(A \cup B) \subset(f(A) \cup f(B))$.

Observation: For every $A, B \subset \operatorname{Dom} f$ it holds that $f(A \cup B)=f(A) \cup f(B)$.
Proof: It holds that

$$
\begin{aligned}
& (y \in f(A \cup B)) \Rightarrow(\exists x \in(A \cup B), y=f(x)) \\
& \Rightarrow((\exists x \in A, y=f(x)) \vee(\exists x \in B, y=f(x))) \\
& \quad \Rightarrow((y \in f(A)) \vee(y \in f(B))) \Rightarrow(y \in f(A) \cup f(B))
\end{aligned}
$$

and we have just proven that $f(A \cup B) \subset(f(A) \cup f(B))$.
On the other hand

$$
\begin{aligned}
&(y \in f(A) \cup f(B)) \Rightarrow((y \in f(A)) \vee(y \in f(B))) \\
& \Rightarrow((\exists x \in A, y=f(x)) \vee(\exists x \in B, y=f(x))) \\
& \Rightarrow(\exists x \in(A \cup B), y=f(x)) \Rightarrow(y \in f(A \cup B))
\end{aligned}
$$

which yields $(f(A) \cup f(B)) \subset f(A \cup B)$. This concludes the proof.

A function $f: X \rightarrow Y$ is said to be
■ injective if $\forall x_{1}, x_{2} \in \operatorname{Dom} f, f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}=x_{2}$. (one-to-one)

- surjective, if $\operatorname{Ran} f=Y$, (onto)
- bijective, if it is surjective and injective.

A function $f: X \rightarrow Y$ is said to be
■ injective if $\forall x_{1}, x_{2} \in \operatorname{Dom} f, f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}=x_{2}$. (one-to-one)

- surjective, if $\operatorname{Ran} f=Y$, (onto)
- bijective, if it is surjective and injective.

Example: a function $f:\{1,2\} \rightarrow\{1\}, f(1)=1, f(2)=1$ is not injective (there are two arguments giving the same value), however, it is surjective. a function $f:\{1,2\} \mapsto\{1,2,3\}, f(1)=1, f(2)=3$ is injective, but not surjective (there is no argument giving the number 2).

A function $f: X \rightarrow Y$ is said to be
■ injective if $\forall x_{1}, x_{2} \in \operatorname{Dom} f, f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}=x_{2}$. (one-to-one)

- surjective, if $\operatorname{Ran} f=Y$, (onto)
- bijective, if it is surjective and injective.

Example: a function $f:\{1,2\} \rightarrow\{1\}, f(1)=1, f(2)=1$ is not injective (there are two arguments giving the same value), however, it is surjective. a function $f:\{1,2\} \mapsto\{1,2,3\}, f(1)=1, f(2)=3$ is injective, but not surjective (there is no argument giving the number 2). Note that if $f: X \rightarrow Y$ is bijective, then Dom f has the same number of elements as Y (both sets have the same cardinality - for example, the sets of all natural numbers and of all even natural numbers have the same size).

Let $f: X \rightarrow Y, g: Y \rightarrow Z$ be such that $\operatorname{Ran} f \subset \operatorname{Dom} g$. Then we define a composition of f and $g, f \circ g: X \rightarrow Z$ as

$$
g \circ f(x)=g(f(x)) .
$$

For example, take $f:\{1,2\} \rightarrow\{1,2,3\}, f(1)=2, f(2)=3$ and $g:\{1,2,3\} \rightarrow\{1,2\}, g(1)=2, g(2)=1, g(3)=2$. Then

$$
g \circ f:\{1,2\} \rightarrow\{1,2\}, g \circ f(1)=1, g \circ f(2)=2
$$

and

$$
f \circ g:\{1,2,3\} \rightarrow\{1,2,3\}, f \circ g(1)=3, f \circ g(2)=2, f \circ g(3)=3 .
$$

A function $f: X \rightarrow X, f(x)=x$ is called identity. Let $f: X \rightarrow Y$ be arbitrary. If there is $g: Y \rightarrow X$ such that $g \circ f(x)=x$ then g is called an inverse function to f and f is called an invertible function.

A function $f: X \rightarrow X, f(x)=x$ is called identity.
Let $f: X \rightarrow Y$ be arbitrary. If there is $g: Y \rightarrow X$ such that $g \circ f(x)=x$ then g is called an inverse function to f and f is called an invertible function.

Observation: Let $f: X \rightarrow Y, \operatorname{Dom} f=X$. Then f is invertible iff f is injective.

A function $f: X \rightarrow X, f(x)=x$ is called identity.
Let $f: X \rightarrow Y$ be arbitrary. If there is $g: Y \rightarrow X$ such that $g \circ f(x)=x$ then g is called an inverse function to f and f is called an invertible function.

Observation: Let $f: X \rightarrow Y, \operatorname{Dom} f=X$. Then f is invertible iff f is injective.
Let f be injective. Then $\forall y \in \operatorname{Ran} f \exists x \in X$ such that $y=f(x)$. It suffices to define $f^{-1}(y)=x$.
Let f be not injective. There exists $x_{1}, x_{2} \in X, x_{1} \neq x_{2}$, such that $f\left(x_{1}\right)=f\left(x_{2}\right)=y$. Let $f^{-1}(y)=x_{1}$ - this is necessary to have $f^{-1}\left(f\left(x_{1}\right)\right)=x_{1}$. But then $f^{-1}\left(f\left(x_{2}\right)\right)=f^{-1}(y)=x_{1} \neq x_{2}$ and f^{-1} is not an inverse function.

Let $A \subset X$. A function $f: X \rightarrow\{0,1\}$ is called an indicator function if $f(x)=1$ if $x \in A$ and $f(x)=0$ if $x \notin A$. Such function is denoted by χ_{A}.

A function $f: X \mapsto \mathbb{R}$ is bounded from above if there is $M \in \mathbb{R}$ such that $f(x) \leq M$ for all $x \in \operatorname{Dom} f$. It is bounded from below if there is $m \in \mathbb{R}$ such that $f(X) \geq m$ for all $x \in \operatorname{Dom} f$. We say that f is bounded if it is bounded from below and from above.

Real functions

We turn our attention to real functions, i.e., functions $f: \mathbb{R} \rightarrow \mathbb{R}$. A graph of such function is a subset of plane consisting of point $\langle x, f(x)\rangle$. For example, the graph of a function $f=\{\langle 1,0\rangle,\langle-1,3\rangle,\langle 0,-2\rangle\}$ is the following

A graph of function $f=2 \chi_{(-1,1)}-2 \chi_{\{-1,1\}}+\chi_{[1, \infty)}$ is

Properties

Monotonicity

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and let $I \subset \operatorname{Dom} f$. We say that f is on $/$
■ increasing, if $\forall x_{1}, x_{2} \in I, x_{1}<x_{2} \Rightarrow f\left(x_{1}\right)<f\left(x_{2}\right)$,

- decreasing, if $\forall x_{1}, x_{2} \in I, x_{1}<x_{2} \Rightarrow f\left(x_{1}\right)>f\left(x_{2}\right)$,
- non-decreasing, if $\forall x_{1}, x_{2} \in I, x_{1}<x_{2} \Rightarrow f\left(x_{1}\right) \leq f\left(x_{2}\right)$,

■ non-increasing, if $\forall x_{1}, x_{2} \in I, x_{1}<x_{2} \Rightarrow f\left(x_{1}\right) \geq f\left(x_{2}\right)$.
If f posses one of these properties we say that f is monotone.

This function is decreasing on an interval $(-\infty, 0]$ and it is decrasing on $(0, \infty)$.

This function is decreasing on an interval $(-\infty, 0]$ and it is decrasing on $(0, \infty)$. However, it is not monotone on whole \mathbb{R}. Indeed, it is enough to take $x_{1}=-1$ and $x_{2}=1$. Clearly $f\left(x_{1}\right)<f\left(x_{2}\right)$ and the function may not be decreasing (even non-increasing).

Continuity

A function $f: \mathbb{R} \mapsto \mathbb{R}$ is said to be continuous at point $x_{0} \in \operatorname{Dom} f$ if

$$
\forall \varepsilon>0, \exists \delta>0, \forall x \in\left(x_{0}-\delta, x_{0}+\delta\right) \cap \operatorname{Dom} f,\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon .
$$

Take function $f(x)=x \chi_{\mathbb{R} \backslash\{1\}}+3 \chi_{\{1\}}$. Its graph is

This function is certainly continuous for every $x \in(-\infty, 1) \cap(1, \infty)$. However it is discontinuous at $x=1$.

A function $f: \mathbb{R} \mapsto \mathbb{R}$ is said to be left-continuous (resp. right continuous) at a point $x_{0} \in \operatorname{Dom} f$ if

$$
\begin{gathered}
\forall \varepsilon>0, \exists \delta>0, \forall x \in\left(x_{0}-\delta, x_{0}\right) \cap \operatorname{Dom} f,\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon \\
\text { (resp. } \left.\forall \varepsilon>0, \exists \delta>0, \forall x \in\left(x_{0}, x_{0}+\delta\right) \cap \operatorname{Dom} f,\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon\right)
\end{gathered}
$$

Further, we say that f is continuous on a set $S \subset \mathbb{R}$ if it is continuous at all of its points.

Observation: Let f and g be functions continuous at x_{0}. Then $f \pm g$ and $f \cdot g$ are also continuous at x_{0}. Moreover, if $g\left(x_{0}\right) \neq 0$ then also $\frac{f}{g}$ is continuous at x_{0}.

Observation: Let f and g be functions continuous at x_{0}. Then $f \pm g$ and $f \cdot g$ are also continuous at x_{0}. Moreover, if $g\left(x_{0}\right) \neq 0$ then also $\frac{f}{g}$ is continuous at x_{0}.
Proof: We prove it for $f+g$ as $f-g$ can be done similarly. Due to continuity we have $\forall \varepsilon>0 \exists \delta_{1}>0$ and $\delta_{2}>0$ such that $\left|f(x)-f\left(x_{0}\right)\right|<\frac{\varepsilon}{2}$ and $\left|g(x)-g\left(x_{0}\right)\right|<\frac{\varepsilon}{2}$ whenever $\left|x-x_{0}\right|<\delta$. But this means that (due to the triangle inequality)

$$
\left|f(x)+g(x)-\left(f\left(x_{0}\right)+g\left(x_{0}\right)\right)\right|<\left|f(x)-f\left(x_{0}\right)\right|+\left|g(x)-g\left(x_{0}\right)\right|<\varepsilon .
$$

Now we turn our attention to the product rule. First of all, since $f\left(x_{0}\right)$ is real and the function is continuous, there exists $\delta_{1}>0$ and $M_{1}>0$ such that $|f(x)|<M_{1}$ whenever $x \in\left(x_{0}-\delta_{1}, x_{0}+\delta_{1}\right) \cap \operatorname{Dom} f$ (see exercises at the end of this lecture). Similarly, there exists $\delta_{2}>0$ and $M_{2}>0$ such that $|g(x)|<M_{2}$ whenever $x \in\left(x_{0}-\delta_{2}, x_{0}+\delta_{2}\right) \cap \operatorname{Dom} f$. Due to continuity, for all $\varepsilon>0$ there exists $\delta>0$ such that $\left|f(x)-f\left(x_{0}\right)\right|<\frac{\varepsilon}{2 M_{2}}$ and $\left|g(x)-g\left(x_{0}\right)\right|<\frac{\varepsilon}{2 M_{1}}$ for all $x \in\left(x_{0}-\delta, x_{0}+\delta\right)$. We may moreover assume that $\delta<\min \left\{\delta_{1}, \delta_{2}\right\}$. Then we have

$$
\begin{array}{r}
\left|f(x) g(x)-f\left(x_{0}\right) g\left(x_{0}\right)\right|=\left|f(x)\left(g(x)-g\left(x_{0}\right)\right)+g\left(x_{0}\right)\left(f(x)-f\left(x_{0}\right)\right)\right| \\
\leq|f(x)|\left|g(x)-g\left(x_{0}\right)\right|+\left|g\left(x_{0}\right)\right|\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon
\end{array}
$$

for all $x \in\left(x_{0}-\delta, x_{0}+\delta\right)$.

To prove the last claim it suffices to show that $\frac{1}{g}$ is continuous at x_{0} and to use the just proven product rule. Without loss of generality, assume that $g\left(x_{0}\right)>0$ and denote its value by $y_{0}=g\left(x_{0}\right)$. Then, due to the continuity of g, there exists $\delta_{1}>0$ such that $g(x)>\frac{y_{0}}{2}$ for all $x \in\left(x_{0}-\delta_{1}, x_{0}+\delta_{1}\right) \cap \operatorname{Dom} f$. Further, for each $\varepsilon>0$ there exists $\delta>0$ such that $\left|g(x)-g\left(x_{0}\right)\right|<y_{0}^{2} \frac{\varepsilon}{2}$ for each $x \in\left(x_{0}-\delta, x_{0}+\delta\right)$ and, moreover, we assume that $\delta<\delta_{1}$. Then we have

$$
\left|\frac{1}{g(x)}-\frac{1}{g\left(x_{0}\right)}\right|=\left|\frac{g\left(x_{0}\right)-g(x)}{g(x) g\left(x_{0}\right)}\right| \leq \frac{\left|g\left(x_{0}\right)-g(x)\right|}{y_{0} \frac{y_{0}}{2}}<\varepsilon
$$

for each $x \in\left(x_{0}-\delta, x_{0}+\delta\right) \cap \operatorname{Dom} f$.
The proof is complete.

Parity and periodicity

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ fulfill $\forall x \in \operatorname{Dom} f,-x \in \operatorname{Dom} f$. Then we say that

- f is odd if $f(-x)=-f(x)$,
- f is even if $f(-x)=f(x)$.

Parity and periodicity

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ fulfill $\forall x \in \operatorname{Dom} f,-x \in \operatorname{Dom} f$. Then we say that

- f is odd if $f(-x)=-f(x)$,
- f is even if $f(-x)=f(x)$.

Definition

A function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $\operatorname{Dom} f=\mathbb{R}$ is called periodic, if there is a number $I>0$ such that $f(x)=f(x+I)$ for all $x \in \mathbb{R}$. The least number I with that property is called a period of a function f and f is then I-periodic.

We introduce a notion of a maximum and minimum of set $A \subset \mathbb{R}$.

Definition

Let $\sup A$ be an element of $A \subset \mathbb{R}$. Then sup A is the highest number of A (or a maximum of A) and we write $\sup A=\max A$. Similarly, if $\inf A$ is an element of A, then $\inf A$ will be the lowest number of A (or a minimum of $A)$ and we write $\inf A=\min A$.

We introduce a notion of a maximum and minimum of set $A \subset \mathbb{R}$.

Definition

Let $\sup A$ be an element of $A \subset \mathbb{R}$. Then sup A is the highest number of A (or a maximum of A) and we write $\sup A=\max A$. Similarly, if $\inf A$ is an element of A, then $\inf A$ will be the lowest number of A (or a minimum of $A)$ and we write $\inf A=\min A$.

The minimum and maximum does not necessarily exists for a general set $A \subset \mathbb{R}$. For example, $A=\left\{\frac{1}{n}, n \in \mathbb{N}\right\}$ has maximum 1 , however, minimum does not exists. The infimum 0 is not contained in this set.

We introduce a notion of a maximum and minimum of set $A \subset \mathbb{R}$.

Definition

Let $\sup A$ be an element of $A \subset \mathbb{R}$. Then sup A is the highest number of A (or a maximum of A) and we write $\sup A=\max A$. Similarly, if $\inf A$ is an element of A, then $\inf A$ will be the lowest number of A (or a minimum of $A)$ and we write $\inf A=\min A$.

The minimum and maximum does not necessarily exists for a general set $A \subset \mathbb{R}$. For example, $A=\left\{\frac{1}{n}, n \in \mathbb{N}\right\}$ has maximum 1 , however, minimum does not exists. The infimum 0 is not contained in this set. Note also that every set $A \subset \mathbb{R}$ with finitely many elements has its maximum and minimum.

Definition

Let f be continuous on an interval $I \subset \mathbb{R}$. Then we write $f \in \mathcal{C}(I)$.

Theorem (Weierstrass)

Let $f \in \mathcal{C}([a, b])$. Then f is bounded and there exists $t, u \in[a, b]$ such that $f(u) \leq f(x) \leq f(t)$ for all $x \in[a, b]$.

Actually, the previous theorem states that every function which is continuous on a closed interval attains its maximum and minimum value.

Theorem (Bolzano)

Let $f \in \mathcal{C}([a, b])$ and $f(a) f(b)<0$. Then there is $\eta \in(a, b)$ such that $f(\eta)=0$.

Theorem (Bolzano)

Let $f \in \mathcal{C}([a, b])$ and $f(a) f(b)<0$. Then there is $\eta \in(a, b)$ such that $f(\eta)=0$.

One can then deduce that every continuous function has the Darboux property (or intermediate value property):

Definition

A function $f: \mathbb{R} \rightarrow \mathbb{R}$, whose $\operatorname{Dom} f$ is an interval, is said to have the Darboux property if for every $x, y \in \operatorname{Dom} f$ and every $\tau \in(f(x), f(y)$ there exists $\varphi \in(x, y)$ such that $\tau=f(\varphi)$.

Lemma
 Let f be an odd function and $(-a, a) \subset \operatorname{Dom} f$ for some $a>0$. Then $f(0)=0$.

Elementary functions

Polynomials are function which arises from a constant function $f \equiv c$, $c \in \mathbb{R}$ and an identity function $f(x)=x$ by finite number of multiplication and additions. In particular, every polynomial is of the form

$$
p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x^{1}+a_{0}
$$

where $n \in \mathbb{N}$ and $a_{0}, \ldots, a_{n} \in \mathbb{R}$. The numbers a_{0}, \ldots, a_{n} are called coefficients. The degree of $p(x)$ is n in a case $a_{n} \neq 0$ and we write $\operatorname{Deg} p=n$. The term $a_{n} x^{n}$ is called a leading term. Recall that $p(x)=x^{n}$ is odd function for odd n and it is an even function for n even. The maximal domain of $p(x)$ is always \mathbb{R}. All x such that $p(x)=0$ are called roots of polynomial p. Let x_{0} be a root of $p(x)$. Then $p(x)=\left(x-x_{0}\right) q(x)$ where $q(x)$ is a polynomial and it holds that $\operatorname{Deg} p(x)=\operatorname{Deg} q(x)+1$.

A rational function is a fraction whose numerator and denominator are polynomials. I.e., a rational function f is of the form

$$
f(x)=\frac{p(x)}{q(x)}
$$

The domain of f is all real numbers except roots of $q(x)$.

Exponential function

Consider a number $a>0$. Let $n \in \mathbb{N}$, we define $a^{n}=a \cdot a \cdot \ldots \cdot a$ where a appears n times on the right hand side. Further, we define $a^{\frac{1}{n}}$ as such number b that $b^{n}=1$. This allows to define a^{r} for all rational numbers $r \in Q$ (do not forget $a^{-r}=\frac{1}{a^{r}}$). Namely, let $r>0$, we define $a^{r}=a^{\frac{p}{q}}=\left(a^{p}\right)^{\frac{1}{q}}$. For $r<0$ we take $a^{r}=\frac{1}{a^{-r}}$. Finally, we are allowed to define uniquely a continuous function

$$
\begin{equation*}
f(x)=a^{x} \tag{1}
\end{equation*}
$$

whose values are prescribed in the aforementioned way. Since the function is constant for $a \equiv 1$, we remove this value from our definition and we consider the relation (1) only for $a \in(0,1) \cup(1, \infty)$. It holds that $\operatorname{Dom} f=\mathbb{R}$ and $\operatorname{Ran} f=(0, \infty)$. Further, $f(0)=1$ (roughly speaking, every number powered to 0 equals one). The function is strictly increasing for $a>1$ and strictly decreasing for $a<1$.

Logarithm

Since $x \mapsto a^{x}$ is injective there exists an inverse function. We will denote it by $\log _{a}$ and it is called logarithm to base a. In particular

$$
\log _{a} y=x \quad \Leftrightarrow \quad a^{x}=y .
$$

Recall that $a \in(0,1) \cup(1, \infty)$ and, due to the properties of the inverse functions, Dom $\log _{a}=(0, \infty)$ and Ran $\log _{a}=\mathbb{R}$. Recall also, that since $a^{0}=1$, we have $\log _{a} 1=0$ for every $a \in(0,1) \cup(1, \infty)$.

The graph of $f(x)=\log _{a}(x), a>1$ is the following

Let e be Euler's number (this is an irrational number which will be defined later, its approximate value is 2.72). The logarithm to base e is called natural logarithm and, because of its importance, we omit the index e in its notation.

Next, we define nth root $f(x)=\sqrt[n]{x}$ as an inverse to $g(x)=x^{n}$. Recall that g is invertible for n odd and $\operatorname{Dom} g=\operatorname{Ran} g=\mathbb{R}$. Thus, Dom $\sqrt[n]{x}=\operatorname{Ran} \sqrt[n]{x}=\mathbb{R}$ for n odd. However, g is not invertible for n even. In that case we have to restrict the domain of g to $[0, \infty)$ in order to have an injective function. The range of this restricted function is also $[0, \infty)$. As a consequence, Dom $\sqrt[n]{x}=\operatorname{Ran} \sqrt[n]{x}=[0, \infty)$ for n even. The nth root is always an increasing function.

There is just one pair of continuous functions $s(x)$ and $c(x)$ with the following properties

- $s(x)^{2}+c(x)^{2}=1$

■ $s(x+y)=s(x) c(y)+c(x) s(y)$
■ $c(x+y)=c(x) c(y)-s(x) s(y)$

- $0<x c(x)<s(x)<x$ for all $x \in(0,1)$.

The function s is called sinus and the function c is called cosine. We also introduce notation $\sin x=s(x)$ and $\cos x=c(x)$. These functions have the following properties:

■ Dom $\sin x=$ Dom $\cos x=\mathbb{R}$, Ran $\sin x=\operatorname{Ran} \cos x=[-1,1]$.

- $\sin x$ is an odd function, $\cos x$ is an even function.
$\square \sin x$ and $\cos x$ are 2π periodic function.
There are several 'known' values of sin and cos:

$x=$	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3}{2} \pi$
$\sin x$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0	-1
$\cos x$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	0

Besides, we define a function $\tan x=\frac{\sin x}{\cos x}$ (tangens) and a function $\cot x=\frac{\cos x}{\sin x}$ (cotangens). These functions are π-periodic, their range is \mathbb{R} and

Dom $\tan x=\mathbb{R} \backslash\left\{\frac{\pi}{2}+k \pi, k \in \mathbb{Z}\right\}, \operatorname{Dom} \cot x=\mathbb{R} \backslash\{k \pi, k \in \mathbb{Z}\}$.

Roughly speaking, cyclometric functions are inverse functions to the aforementioned trigonometric functions. However, every trigonometric function is periodic and thus it is not one-to-one. To obtain the inverse function, we have to restrict the domain of every trigonometric function. In particular, we define functions $\sin _{r}, \cos _{r}, \tan _{r}$ and $\cot _{r}$ as follows

$$
\begin{aligned}
& \sin _{r} x=\sin x, \text { Dom } \sin _{r}=\left[-\pi_{2}, \pi_{2}\right] \\
& \cos _{r} x=\cos x, \text { Dom } \cos _{r}=[0, \pi] \\
& \tan _{r} x=\tan x, \text { Dom } \tan _{r}=\left[-\pi_{2}, \pi_{2}\right] \\
& \cot _{r} x=\cot x, \text { Dom } \cot _{r}=[0, \pi]
\end{aligned}
$$

Now, since these functions are injective, we may define

$$
\begin{aligned}
\arcsin & =\sin _{r}^{-1} \\
\arccos & =\cos _{r}^{-1} \\
\arctan & =\tan _{r}^{-1} \\
\operatorname{arccot} & =\cot _{r}^{-1}
\end{aligned}
$$

Let write down several properties of each function:
■ Dom $\arcsin =[-1,1]$, Ran $\arcsin =\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, arcsin is an increasing function and $\arcsin (-1)=-\frac{\pi}{2}, \arcsin (0)=0$ and $\arcsin (1)=\frac{\pi}{2}$

- Dom arccos $=[-1,1]$, Ran arccos $=[0, \pi]$, arccos is a decreasing function and $\arcsin (-1)=\pi, \arcsin (0)=\frac{\pi}{2}$ and $\arcsin (1)=0$.
■ Dom arctan $=\mathbb{R}$, Ran $\arctan =\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, arctan is an increasing function and $\arctan (0)=0$.
- Dom arccot $=\mathbb{R}$, Ran arccot $=(0, \pi)$, arccot is a decreasing function and $\operatorname{arccot}(0)=\frac{\pi}{2}$.

Limits

Definition

A limit point of a set $S \subset \mathbb{R}$ is every point $x_{0} \in \mathbb{R}$ such that for every $\delta>0$ it holds that $\left(\left(x_{0}-\delta, x_{0}\right) \cup\left(x_{0}, x_{0}+\delta\right)\right) \cap S \neq \emptyset$.

Consider, for example, $S=(0,1) \cup\{2\}$. The set of all its limit point is a closed interval $[0,1]$.

Limits

Definition

A limit point of a set $S \subset \mathbb{R}$ is every point $x_{0} \in \mathbb{R}$ such that for every $\delta>0$ it holds that $\left(\left(x_{0}-\delta, x_{0}\right) \cup\left(x_{0}, x_{0}+\delta\right)\right) \cap S \neq \emptyset$.

Consider, for example, $S=(0,1) \cup\{2\}$. The set of all its limit point is a closed interval $[0,1]$.

Definition

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and let x_{0} be a limit point of $\operatorname{Dom} f$. We say, that $A \in \mathbb{R}$ is a limit of f at x_{0} if
$\forall \varepsilon>0, \exists \delta>0, \forall x \in\left(\left(x_{0}-\delta, x_{0}\right) \cup\left(x_{0}, x_{0}+\delta\right)\right) \cap \operatorname{Dom} f,|f(x)-A|<\varepsilon$.
We write

$$
\lim _{x \rightarrow x_{0}} f(x)=A
$$

\mathbb{R}^{*} modification:

Definition

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and let x_{0} be a limit point of $\operatorname{Dom} f$. We say that $\lim _{x \rightarrow x_{0}}=\infty$ if

$$
\forall M>0, \exists \delta>0, \forall x \in\left(\left(x_{0}-\delta, x_{0}\right) \cup\left(x_{0}, x_{0}+\delta\right)\right) \cap \operatorname{Dom} f, f(x)>M
$$

Further, we say that $\lim _{x \rightarrow x_{0}} f(x)=-\infty$ if $\lim _{x \rightarrow x_{0}}-f(x)=\infty$.

Definition

Lef $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined at least on (c, ∞) for some $c>0$. We say that $\lim _{x \rightarrow \infty}=A \in \mathbb{R}$ if

$$
\forall \varepsilon>0, \exists C>c, \forall x \in(C, \infty),|f(x)-A|<\varepsilon
$$

Further, we say that $\lim _{x \rightarrow \infty}=\infty$ if

$$
\forall M>0, \exists C>c, \forall x \in(C, \infty), f(x)>M
$$

Observation

Once the limit exists, it is determined uniquely.

Proof.

Let $\lim _{x \rightarrow x_{0}} f(x)=A$ and $\lim _{x \rightarrow x_{0}} f(x)=B$ for some different $A, B \in \mathbb{R}$. Take $\varepsilon=\frac{1}{3}|B-A|$. According to the definition of a limit, there exists $\delta>0$ such that $|f(x)-A|<\varepsilon$ and, simultaneously, $|f(x)-B|<\varepsilon$ for some $x \in\left(x_{0}-\delta, x_{0}+\delta\right)$. We use the triangle inequality to deduce

$$
|A-B|=|A-f(x)+f(x)-B| \leq|A-f(x)|+|f(x)-B| \leq \frac{2}{3}|A-B|
$$

The case of infinite limits is done by an obvious modification.

Observation

Let f be a function continuous in a limit point $x_{0} \in \operatorname{Dom} f$. Then

$$
\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)
$$

Proof.

Let $\varepsilon>0$ be arbitrary. As f is continuous, there exists $\delta>0$ such that $\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon$ whenever $\left|x-x_{0}\right|<\varepsilon, x \in \operatorname{Dom} f$. But that is exactly that δ which suits the definition of a limit.

Here we would like to emphasize that every elementary function from the previous chapter is continuous on its domain.

This is the first tool which allows a computation. For example

$$
\lim _{x \rightarrow 3} x-5=-2
$$

This is the first tool which allows a computation. For example

$$
\lim _{x \rightarrow 3} x-5=-2
$$

Consider for example a function $f(x)=\frac{x^{2}+4 x+3}{x^{2}-1}$. This function is clearly not defined at points -1 and 1 and is continuous everywhere else.
Anyway, we may compute

$$
\lim _{x \rightarrow-1} \frac{x^{2}+4 x+3}{x^{2}-1}=\lim _{x \rightarrow-1} \frac{(x+1)(x+3)}{(x-1)(x+1)}=\lim _{x \rightarrow-1} \frac{x+3}{x-1}=-1
$$

Definition

Let x_{0} be a limit point of $\operatorname{Dom} f$. We say that $A \in \mathbb{R}$ is a left-sided limit of f at x_{0} (resp. right-sided limit of f in x_{0}) if

$$
\forall \varepsilon>0, \exists \delta>0, \forall x \in\left(x_{0}-\delta, x_{0}\right) \cap \operatorname{Dom} f,|f(x)-A|<\varepsilon
$$

(resp.

$$
\left.\forall \varepsilon>0, \exists \delta>0, \forall x \in\left(x_{0}, x_{0}+\delta\right) \cap \operatorname{Dom} f,|f(x)-A|<\varepsilon .\right)
$$

We write

$$
\lim _{x \rightarrow x_{0}-} f(x)=A \quad\left(\text { resp. } \quad \lim _{x \rightarrow x_{0}+} f(x)=A\right)
$$

The infinite limits are defined similarly.

Lemma (Arithmetic of limits)

Let $f, g: \mathbb{R} \mapsto \mathbb{R}$ and let x_{0} be a limit point of $\operatorname{Dom} f$ and $\operatorname{Dom} g$. Let, moreover, $c \in \mathbb{R}$. Then

$$
\begin{align*}
\lim _{x \rightarrow x_{0}}(f(x) \pm g(x)) & =\lim _{x \rightarrow x_{0}} f(x) \pm \lim _{x \rightarrow x_{0}} g(x) \\
\lim _{x \rightarrow x_{0}} c f(x) & =c \lim _{x \rightarrow x_{0}} f(x) \\
\lim _{x \rightarrow x_{0}}(f(x) g(x)) & =\lim _{x \rightarrow x_{0}} f(x) \lim _{x \rightarrow x_{0}} g(x) \tag{2}\\
\lim _{x \rightarrow x_{0}} \frac{f(x)}{g(x)} & =\frac{\lim _{x \rightarrow x_{0}} f(x)}{\lim _{x \rightarrow x_{0}} g(x)}
\end{align*}
$$

assuming the right hand side has meaning.
Indefinite values:

$$
0 \cdot \infty, \frac{0}{0}, \frac{\infty}{\infty}, \infty-\infty, 1^{\infty}, 0^{\infty}
$$

Note that the arithmetic of limits holds also for the one-sided limits. \equiv

Let compute a limit $\lim _{x \rightarrow \infty} \frac{x-1}{x-2}$. According to arithmetic of limits $\lim _{x \rightarrow \infty} x-1=\infty$ and $\lim _{x \rightarrow \infty} x-2=\infty$. However, we cannot write that

$$
\lim _{x \rightarrow \infty} \frac{x-1}{x-2}=\frac{\infty}{\infty}
$$

as we get an indefinite term. The trick here is to simplify by the most rapidly growing summand in the denominator:

$$
\lim _{x \rightarrow \infty} \frac{x-1}{x-2}=\lim _{x \rightarrow \infty} \frac{1-\frac{1}{x}}{1-\frac{2}{x}}=\frac{1-0}{1-2 \cdot 0}=1
$$

Observation

Let $\lim _{x \rightarrow x_{0}} f(x)=A$ for some $x_{0} \in \mathbb{R}$ and $A \in \mathbb{R}^{*}$. Then also $\lim _{x \rightarrow x_{0}-} f(x)=A$ and $\lim _{x \rightarrow x_{0}+} f(x)=A$.

Let consider $\lim _{x \rightarrow 0} \frac{1}{x}$. We are going to show that $\lim _{x \rightarrow 0-} \frac{1}{x}=-\infty$ and $\lim _{x \rightarrow 0+} \frac{1}{x}=+\infty$. In such case, $\lim _{x \rightarrow 0} \frac{1}{x}$ does not exist according to the just mentioned observation.
Let $K>0$. We take $\delta=\frac{1}{K}$ and, consequently, for all $x \in(0, \delta)$ it holds that $f(x)=\frac{1}{x}>\frac{1}{\delta}=K$ and $\lim _{x \rightarrow 0+\frac{1}{x}}=\infty$.
Similarly, for all $x \in(-\delta, 0)$ it holds that $f(x)=\frac{1}{x}<\frac{1}{\delta}=-K$ and thus $\lim _{x \rightarrow 0-\frac{1}{x}}=-\infty$.

Few exercises

$$
\begin{aligned}
& \lim _{x \rightarrow 2} \frac{x^{3}+x-2}{x^{2}+1} \\
& \lim _{x \rightarrow 2} \frac{x^{3}+3 x-14}{x^{2}-4 x+4} \\
& \lim _{x \rightarrow-2} \frac{x^{3}+4 x^{2}-8}{x^{2}+5 x+6} \\
& \lim _{x \rightarrow \infty} \frac{x^{4}-5 x}{x^{2}} \\
& \lim _{x \rightarrow 1} \frac{x+3}{x^{2}-2 x+1}
\end{aligned}
$$

- $\lim _{x \rightarrow \infty} a^{x}=\infty$ for $a>1$,
- $\lim _{x \rightarrow \infty} \log _{a} x=\infty$ for $a>1$,
- $\lim _{x \rightarrow 0+} \log _{a} x=-\infty$ for $a>1$,
- $\lim _{x \rightarrow \frac{\pi}{2}-} \tan x=\infty$,
- $\lim _{x \rightarrow \infty} \arctan x=\frac{\pi}{2}$,
- $\lim _{x \rightarrow \infty} \operatorname{arccot} x=0$,
- $\lim _{x \rightarrow-\infty} \operatorname{arccot} x=\pi$.

The following limits are used without any further proofs:

- There is a number e such that

$$
\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1
$$

We recall that e is the Euler number (the base of natural logarithm) whose value is approx. 2.72.

The following limits are used without any further proofs:

- There is a number e such that

$$
\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1
$$

We recall that e is the Euler number (the base of natural logarithm) whose value is approx. 2.72.

- Further,

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=1
$$

- Finally,

$$
\lim _{x \rightarrow 0} \frac{\log (x+1)}{x}=1
$$

Lemma (Limit of composed function)

Let $\lim _{x \rightarrow x_{0}} g(x)=A$ and $\lim _{y \rightarrow A} f(y)=B$. Then

$$
\lim _{x \rightarrow x_{0}} f(g(x))=B
$$

if at least one of the following is true:
$1 f$ is continuous at the point A or
2 there is δ such that for all $x \in\left(x-\delta, x_{0}\right) \cap\left(x_{0}, x+\delta\right)$ it holds that $g(x) \neq A$.

Let compute

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}=\lim _{x \rightarrow 0} \frac{\sin ^{2}\left(\frac{x}{2}\right)+\cos ^{2}\left(\frac{x}{2}\right)-\cos ^{2}\left(\frac{x}{2}\right)+}{x^{2}} \sin ^{2}\left(\frac{x}{2}\right) \\
&=\lim _{x \rightarrow 0} \frac{2 \sin ^{2}\left(\frac{x}{2}\right)}{4\left(\frac{x}{2}\right)^{2}}
\end{aligned}
$$

Let compute

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}=\lim _{x \rightarrow 0} \frac{\sin ^{2}\left(\frac{x}{2}\right)+\cos ^{2}\left(\frac{x}{2}\right)-\cos ^{2}\left(\frac{x}{2}\right)+\sin ^{2}\left(\frac{x}{2}\right)}{x^{2}} \\
&=\lim _{x \rightarrow 0} \frac{2 \sin ^{2}\left(\frac{x}{2}\right)}{4\left(\frac{x}{2}\right)^{2}}
\end{aligned}
$$

Now we are allowed to use the Lemma LOCF, note that $g(x)=\frac{x}{2}$ is injective and thus the assumptions of LOCF are fulfilled.

Let compute

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}=\lim _{x \rightarrow 0} \frac{\sin ^{2}\left(\frac{x}{2}\right)+\cos ^{2}\left(\frac{x}{2}\right)-\cos ^{2}\left(\frac{x}{2}\right)+\sin ^{2}\left(\frac{x}{2}\right)}{x^{2}} \\
&=\lim _{x \rightarrow 0} \frac{2 \sin ^{2}\left(\frac{x}{2}\right)}{4\left(\frac{x}{2}\right)^{2}}
\end{aligned}
$$

Now we are allowed to use the Lemma LOCF, note that $g(x)=\frac{x}{2}$ is injective and thus the assumptions of LOCF are fulfilled. Thus

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{2 \sin ^{2}\left(\frac{x}{2}\right)}{4\left(\frac{x}{2}\right)^{2}}=\frac{1}{2} \lim _{x \rightarrow 0} \frac{\sin \left(\frac{x}{2}\right)}{\frac{x}{2}} & \frac{\sin \left(\frac{x}{2}\right)}{\frac{x}{2}} \\
& \stackrel{A L}{=} \frac{1}{2} \lim _{x \rightarrow 0} \frac{\sin \left(\frac{x}{2}\right)}{\frac{x}{2}} \lim _{x \rightarrow 0} \frac{\sin \left(\frac{x}{2}\right)}{\frac{x}{2}} \text { LOCF } \frac{1}{2}
\end{aligned}
$$

Lemma (Sandwich Lemma)

Let $x_{0} \in \mathbb{R}$ and let there is $\delta>0$ such that

$$
f(x) \leq g(x) \leq h(x), \forall x \in\left(x_{0}-\delta, x_{0}\right) \cup\left(x_{0}, x_{0}+\delta\right)
$$

Then $\lim _{x \rightarrow x_{0}} f(x)=\lim _{x \rightarrow x_{0}} h(x)=A$ implies $\lim _{x \rightarrow x_{0}} g(x)=A$.

Let compute $\lim _{x \rightarrow 0} x \sin \left(\frac{1}{x}\right)$. It holds that

$$
-|x| \leq x \sin \left(\frac{1}{x}\right) \leq|x|
$$

for all x in, say, $(-1,0) \cup(0,1)$. Further,

$$
\lim _{x \rightarrow 0}-|x|=\lim _{x \rightarrow 0}|x|=0
$$

Exercise:

- $\lim _{x \rightarrow \infty} \sin x$
- $\lim _{x \rightarrow \infty} \frac{\sin x}{x}$
- $\lim _{x \rightarrow 0} \frac{\sin (2 x)}{e^{x}-1}$
- $\lim _{x \rightarrow \infty} \frac{(x+1)^{4}}{(x+\sqrt{x})^{3}}$
- $\lim _{x \rightarrow \infty} \sqrt{x}(\sqrt{2 x}-\sqrt{2 x-1})$
- $\lim _{x \rightarrow 1}\left(\frac{1}{1-x}-\frac{3}{1-x^{3}}\right)$
- $\lim _{x \rightarrow \infty} \frac{\left(\sqrt{x^{2}+1}+x\right)^{2}}{\sqrt[3]{x^{6}+1}}$
- $\lim _{x \rightarrow 0} \frac{\tan x-\sin x}{x^{3}}$
- $\lim _{x \rightarrow 0} \frac{\sin (2 x)}{\sqrt{x+3}-\sqrt{3}}$

Relation between a limit and continuity

Recall:

Lemma

A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous at $x_{0} \in$ Domf if and only if $\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)$.

Exercises

- We saw that $f(x)=x \chi_{\mathbb{R} \backslash\{1\}}+3 \chi_{\{1\}}$ is not continuous.
- Decide about the continuity of

$$
f(x)=\left(\frac{1}{x}\right) \chi_{[1, \infty)}+\left(\frac{(2 x+2)(x-1)}{(x+2)(x-1)}\right) \chi_{(-\infty, 1)}
$$

- How about the continuity of

$$
f(x)=e^{x} \chi_{(-\infty, 0]}+\left(\frac{\sin (4 x)-\sin (3 x)}{4 x-3 x}\right) \chi_{(0, \infty)}
$$

Let recall few facts of lines. Let have a line passing through two points $A=\left\langle a_{1}, a_{2}\right\rangle$ and $B=\left\langle b_{1}, b_{2}\right\rangle$ with $a_{1} \neq b_{1}$. Then the slope of the line is a number $k=\frac{a_{2}-b_{2}}{a_{1}-b_{1}}$. The equation of the line has form

$$
y=k x+q
$$

where $q \in \mathbb{R}$ is determined such that the equation holds true for $y=a_{2}$ and $x=a_{1}$ (resp. $y=b_{2}$ and $y=b_{1}$).

Consider a graph of a function $f(x)$, for example, of the following form

The equation of the line passing through point $\left\langle x_{1}, f\left(x_{1}\right)\right\rangle$ and $\left\langle x_{2}, f\left(x_{2}\right)\right\rangle$ is

$$
y=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}\left(x-x_{1}\right)+f\left(x_{1}\right) .
$$

How to make a tangent line? Just simply tend with x_{2} to x_{1}. So the tangent line has equation

$$
y=k\left(x-x_{1}\right)+f\left(x_{1}\right)
$$

where

$$
k=\lim _{x_{2} \rightarrow x_{1}} \frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}
$$

assuming the limit exists.

How to make a tangent line? Just simply tend with x_{2} to x_{1}. So the tangent line has equation

$$
y=k\left(x-x_{1}\right)+f\left(x_{1}\right)
$$

where

$$
k=\lim _{x_{2} \rightarrow x_{1}} \frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}
$$

assuming the limit exists. We denote $h:=x_{2}-x_{1}$ and then we may write

$$
k=\lim _{h \rightarrow 0} \frac{f\left(x_{1}+h\right)-f\left(x_{1}\right)}{h} .
$$

Observation

Let $f^{\prime}\left(x_{0}\right)$ is real. Then f is continuous at x_{0}.

Proof.

Indeed, it is enough to compute

$$
\lim _{x \rightarrow x_{0}} f(x)-f\left(x_{0}\right)=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}\left(x-x_{0}\right)=f^{\prime}\left(x_{0}\right) \cdot 0=0
$$

Consequently, $\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)$ and the function is continuous at x_{0}.

Let $f: \mathbb{R} \rightarrow \mathbb{R}$. We define

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} .
$$

We say that f^{\prime} is derivative of f.

Let $f: \mathbb{R} \rightarrow \mathbb{R}$. We define

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} .
$$

We say that f^{\prime} is derivative of f. In particular, a derivative of f in a point x is a slope of the tangent line passing through $\langle x, f(x)\rangle$.

Let $f: \mathbb{R} \rightarrow \mathbb{R}$. We define

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

We say that f^{\prime} is derivative of f.
In particular, a derivative of f in a point x is a slope of the tangent line passing through $\langle x, f(x)\rangle$.
Let emphasize that f^{\prime} does not exist for every function.

Exercise: Compute derivatives for:

- $f(x)=x^{n}, n \in \mathbb{N}$
- $f(x)=e^{x}$
- $f(x)=\sin x$
- $f(x)=\cos x$
- $f(x)=\log x$

To sum up:

$f(x)$	$f^{\prime}(x)$	conditions
x^{n}	$n x^{n-1}$	$n \in \mathbb{N}, x \in \mathbb{R}$
e^{x}	e^{x}	$x \in \mathbb{R}$
$\sin x$	$\cos x$	$x \in \mathbb{R}$
$\cos x$	$-\sin x$	$x \in \mathbb{R}$
$\log x$	$\frac{1}{x}$	$x \in(0, \infty)$

Lemma

Let f and g be differentiable functions. Then

$$
\begin{aligned}
(f(x) \pm g(x))^{\prime} & =f^{\prime}(x) \pm g^{\prime}(x) \\
(f(x) g(x))^{\prime} & =f^{\prime}(x) g(x)+f(x) g^{\prime}(x) \\
\left(\frac{f(x)}{g(x)}\right)^{\prime} & =\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{(g(x))^{2}}
\end{aligned}
$$

if both sides have sense.

Lemma

Let f and g be differentiable functions. Then

$$
\begin{aligned}
(f(x) \pm g(x))^{\prime} & =f^{\prime}(x) \pm g^{\prime}(x) \\
(f(x) g(x))^{\prime} & =f^{\prime}(x) g(x)+f(x) g^{\prime}(x) \\
\left(\frac{f(x)}{g(x)}\right)^{\prime} & =\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{(g(x))^{2}}
\end{aligned}
$$

if both sides have sense.

Exercise

- Compute $\left(x^{5}-4 x^{3}+\log x\right)^{\prime}$.
- Compute $\left(x^{3} \sin x\right)^{\prime}$.
- Compute $\left(\frac{x e^{x}}{\cos x}\right)^{\prime}$.

Exercise

- Compute $(\tan x)^{\prime}$.

Lemma

Let f and g be differentiable functions and let $b=f(a)$. Then

$$
(g \circ f)^{\prime}(a)=g^{\prime}(b) f^{\prime}(a)=g^{\prime}(f(a)) f^{\prime}(a) .
$$

Lemma

Let f and g be differentiable functions and let $b=f(a)$. Then

$$
(g \circ f)^{\prime}(a)=g^{\prime}(b) f^{\prime}(a)=g^{\prime}(f(a)) f^{\prime}(a)
$$

Exercise: Compute

- $\left(e^{2 x}\right)^{\prime}$
- $\left(5^{x}\right)^{\prime}$ (and generally $\left.\left(a^{x}\right)^{\prime}\right)$
- $\left(\cos \left(x^{2}\right)\right)^{\prime}$
- $\left(x^{2} \sqrt{x+1}\right)^{\prime}$
- $(\arctan x)^{\prime}($ hint: use the fact that $x=\arctan \circ \tan x)$

To sum up, we present the following table:

$f(x)$	$f^{\prime}(x)$	conditions
x^{n}	$n x^{n-1}$	$n \in \mathbb{R}, x$ as usual
e^{x}	e^{x}	$x \in \mathbb{R}$
a^{x}	$\log a a^{x}$	$a \in(0,1) \cup(1, \infty), x \in \mathbb{R}$
$\log x$	$\frac{1}{x}$	$x \in(0, \infty)$
$\sin x$	$\cos x$	$x \in \mathbb{R}$
$\cos x$	$-\sin x$	$x \in \mathbb{R}$
$\tan x$	$\frac{1}{\cos ^{2} x}$	$x \in \mathbb{R} \backslash\left\{\frac{\pi}{2}+k \pi, k \in \mathbb{Z}\right\}$
$\cot x$	$-\frac{1}{\sin ^{2} x}$	$x \in \mathbb{R} \backslash\{k \pi, k \in \mathbb{Z}\}$
$\arctan x$	$\frac{1}{1+x^{2}}$	$x \in \mathbb{R}$
$\operatorname{arccot} x$	$-\frac{1}{1+x^{2}}$	$x \in \mathbb{R}$
$\arcsin x$	$\frac{1}{\sqrt{1-x^{2}}}$	$x \in(-1,1)$
$\arccos x$	$-\frac{1}{\sqrt{1-x^{2}}}$	$x \in(-1,1)$

Exercises

- Write the equation of the tangent line to the graph of $f(x)=x^{2}+5 x+8$ at a point $x_{0}=-2, y_{0}=?$.
- Find all tangent lines to the graph of $f(x)=x+\frac{1}{x^{2}}$ which are parallel to the line $y=-2 x$.

Exercises

- Write the equation of the tangent line to the graph of $f(x)=x^{2}+5 x+8$ at a point $x_{0}=-2, y_{0}=?$.
■ Find all tangent lines to the graph of $f(x)=x+\frac{1}{x^{2}}$ which are parallel to the line $y=-2 x$.
As a matter of fact, the formula for the tangent line is

$$
y=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+y_{0}
$$

where x_{0} and y_{0} is the point of tangency.

Definition

We say that $f: \mathbb{R} \rightarrow \mathbb{R}$ attains its local maximum at a point $x_{0} \in \operatorname{Dom} f$ if

$$
\exists \delta>0, \forall x \in\left(x_{0}-\delta, x_{0}+\delta\right) \cap \operatorname{Dom} f, f(x) \leq f\left(x_{0}\right)
$$

Definition

We say that $f: \mathbb{R} \rightarrow \mathbb{R}$ attains its local maximum at a point $x_{0} \in \operatorname{Dom} f$ if

$$
\exists \delta>0, \forall x \in\left(x_{0}-\delta, x_{0}+\delta\right) \cap \operatorname{Dom} f, f(x) \leq f\left(x_{0}\right)
$$

Lemma

Let f be defined on an interval (a, b) let it attains its local maximum (resp. minimum) in a point $x_{0} \in(a, b)$, and let $f^{\prime}\left(x_{0}\right)$ exist. Then $f^{\prime}\left(x_{0}\right)=0$.

Example:

- Find all points where the function

$$
f(x)=x^{2} e^{x}
$$

may attend its local maximum or minimum.

Definition

We say that $f: \mathbb{R} \rightarrow \mathbb{R}$ attains its local maximum at a point $x_{0} \in \operatorname{Dom} f$ if

$$
\exists \delta>0, \forall x \in\left(x_{0}-\delta, x_{0}+\delta\right) \cap \operatorname{Dom} f, f(x) \leq f\left(x_{0}\right)
$$

Lemma

Let f be defined on an interval (a, b) let it attains its local maximum (resp. minimum) in a point $x_{0} \in(a, b)$, and let $f^{\prime}\left(x_{0}\right)$ exist. Then $f^{\prime}\left(x_{0}\right)=0$.

Example:

- Find all points where the function

$$
f(x)=x^{2} e^{x}
$$

may attend its local maximum or minimum.

Definition

The point x_{0} for which $f^{\prime}\left(x_{0}\right)=0$ is called a stationary point.

Lemma

Let x_{0} be a stationary point and let $f \in C^{2}$ (meaning: f has continuous second derivatives). Then
1 if $f^{\prime \prime}\left(x_{0}\right)>0$, the function has a local minimum at x_{0},
2 if $f^{\prime \prime}\left(x_{0}\right)<0$, the function has a local maximum at x_{0},
3 if $f^{\prime \prime}\left(x_{0}\right)=0$, we do not know anything.

Lemma

Let x_{0} be a stationary point and let $f \in C^{2}$ (meaning: f has continuous second derivatives). Then
1 if $f^{\prime \prime}\left(x_{0}\right)>0$, the function has a local minimum at x_{0},
2 if $f^{\prime \prime}\left(x_{0}\right)<0$, the function has a local maximum at x_{0},
3 if $f^{\prime \prime}\left(x_{0}\right)=0$, we do not know anything.

Example:

- Finish the previous example, i.e., clasiffy the extremes of $f(x)=x^{2} e^{x}$.

Definition

Maximum of $f: \mathbb{R} \rightarrow \mathbb{R}$ on $[a, b] \subset \mathbb{R}$ is attained in $x_{0} \in[a, b]$ if $f\left(x_{0}\right) \geq f(x)$ for every $x \in[a, b]$. Similarly, minimum of f is attained in $x_{1} \in[a, b]$ if $f\left(x_{1}\right) \leq f(x)$ for every $x \in[a, b]$.

Example:

- Find the maximum and minimum of

$$
f(x)=2 x^{3}-3 x^{2}-12 x+8 \text { on }[-3,3] .
$$

Lemma

Let $f \in C^{1}$ and let $[a, b] \subset \operatorname{Dom} f$.
1 If $f^{\prime}(x)>0$ for every $x \in(a, b)$, then f is increasing on $[a, b]$.
2 If $f^{\prime}(x)<0$ for every $x \in(a, b)$, then f is decreasing on $[a, b]$.
3 If $f^{\prime}(x) \geq 0$ for every $x \in(a, b)$, then f is non-decreasing on $[a, b]$.
4 If $f^{\prime}(x) \leq 0$ for every $x \in(a, b)$, then f is non-increasing on $[a, b]$.

Exercise

- Find local extremes of $f(x)=12 x^{5}-15 x^{4}-40 x^{3}+60$. Determine the maximal intervals of monotonicity.

Definition

We say that $f: \mathbb{R} \rightarrow \mathbb{R}$ is convex on a set $I \subset \operatorname{Dom} f$ if for all $x, y, z \in I$, $x<y<z$ it holds that

$$
\frac{f(y)-f(x)}{y-x}<\frac{f(z)-f(y)}{z-y}
$$

We say that f is concave on I if $-f$ is convex on I.

Definition

We say that $x \in \mathbb{R}$ is a point of inflection of $f: \mathbb{R} \rightarrow \mathbb{R}$ if f is continuous at x and there is $\delta>0$ such that one of the following appears
$1 f$ is concave on $(x-\delta, x)$ and convex on $(x, x+\delta)$ or
$2 f$ is convex on $(x-\delta, x)$ and concave on $(x, x+\delta)$.

Observation

Let $f \in \mathcal{C}(I)$ for some interval $I \subset \mathbb{R}$. Assume that $f^{\prime \prime}(x)$ exists for all $x \in I$.

1 If $f^{\prime \prime}(x)>0$ for all $x \in I$ then f is convex on I.
2 If $f^{\prime \prime}(x)<0$ for all $x \in I$ then f is concave on I.

Example

■ Find the interval of convexity and concavity of $f(x)=\frac{1}{x^{3}}+\frac{1}{x^{2}}$, find its points of inflection.

Asymptotes:

Definition

Let $\lim _{x \rightarrow \infty} \frac{f(x)}{x}=k_{+} \in \mathbb{R}$ and let $\lim _{x \rightarrow \infty} f(x)-k_{+} x=q_{+}$. Then an asymptote at ∞ is a line with equation $y=k_{+} x+q_{+}$. Let $\lim _{x \rightarrow-\infty} \frac{f(x)}{x}=k_{-} \in \mathbb{R}$ and let $\lim _{x \rightarrow-\infty} f(x)-k_{-} x=q_{-}$. Then an asymptote at $-\infty$ is a line with equation $y=k_{-} x+q_{-}$.

Exercises:

■ Find the asymptotes of $f(x)=e^{x}+x+1$.

- Find the asymptotes of $f(x)=\frac{x^{3}-x^{2}}{x^{2}+1}$.

The course of a function Now we are ready to describe the problem of the course of function. The task 'examine the course of the following function' consists of the following sub-tasks:

1 To find out the domain, to determine whether the function is even, odd or periodic.
2 To find intersections with axes.
3 To examine the behavior of the function at the edges of the domain.
4 To derive function, to determine sets where the function is increasing and decreasing, to determine extremes.
5 To differentiate the function for the second time, to determine sets where the function is concave, convex, to determine points of inflection.

6 To sketch a graph of the function.

Exercise:

- Examine the course of $f(x)=\frac{x^{2}+3}{x-1}$.

Further exercises

- Examine the course of $f(x)=3 x^{5}-5 x^{3}$.
- Examine the course of $f(x)=x^{2}+\frac{1}{x^{2}}$.
- Examine the course of $f(x)=\frac{|x-1|}{x+2}$.
- Examine the course of $f(x)=(x-4) \sqrt[3]{x}$.

■ Examine the course of $f(x)=3+\sin x \cos x$.

Lemma (l'Hospital)

Let f and g have finite derivatives for all $x \in(a, b) \subset \mathbb{R}$. Assume $g^{\prime}(x) \neq 0$ and

$$
\lim _{x \rightarrow a+} \frac{f^{\prime}(x)}{g^{\prime}(x)}=A \in \mathbb{R}^{*}
$$

Let moreover one of the following is true:
$1 \lim _{x \rightarrow a+} f(x)=0$ and $\lim _{x \rightarrow a+} g(x)=0$ or
$2 \lim _{x \rightarrow a+}|g(x)|=\infty$.
Then

$$
\lim _{x \rightarrow a+} \frac{f(x)}{g(x)}=A
$$

Obviously, the same true is also for $x \rightarrow b-$.

Compute:
$1 \lim _{x \rightarrow 2} \frac{x^{2}-4}{x^{2}-x-2}$
$2 \lim _{x \rightarrow 0} \frac{x \sin x}{1-\cos x^{2}}$
$3 \lim _{x \rightarrow \infty} \frac{x}{\sqrt{x^{2}+1}}$
$4 \lim _{x \rightarrow \frac{\pi}{4}-} \tan (2 x) \log (\tan x)$
$5 \lim _{x \rightarrow 0}\left(\frac{x-1}{2 x^{2}}-\frac{1}{x\left(e^{2 x}-1\right)}\right)$
$6 \lim _{x \rightarrow 0}(\cos (3 x))^{\frac{1}{x^{2}}}$

Exercise

- Examine the course of $f(x)=\frac{\log x}{x}+1$.
- Examine the course of $f(x)=(x+2) e^{\frac{1}{x}}$.
- Examine the course of $f(x)=(x+3) e^{x-2}$.
- Examine the course of $f(x)=x \sqrt{1-x^{2}}$.

Definition (The Taylor polynomial)

Let f be n-times differentiable at point x_{0}. Then the polynomial of the form

$$
\begin{aligned}
& T_{f, x_{0}, n}(x) \\
& \begin{aligned}
:=f\left(x_{0}\right)+\frac{f^{\prime}\left(x_{0}\right)}{1!}\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\ldots & +\frac{f^{(n)}}{n!}\left(x-x_{0}\right)^{n} \\
& =\sum_{j=0}^{n} \frac{f^{(i)}}{i!}\left(x-x_{0}\right)^{i}
\end{aligned}
\end{aligned}
$$

is called the Taylor polynomial for f at point x_{0} of degree n.

Example

- Write the fourth-degree Taylor polynomial for $f(x)=x \log x$ at point $x_{0}=1$.

Lemma

Assume that f is $(n+1)$-times differentiable at x_{0}. Let $x \in \mathbb{R}$ be arbitrary and let f is $(n+1)$-times differentiable on a closed interval I with edges at x_{0} and x. Then there is ζ in between of x and x_{0} such that

$$
f(x)-T_{f, x_{0}, n}(x)=\frac{f^{(n+1)}(\zeta)}{(n+1)!}\left(x-x_{0}\right)^{n+1}
$$

Example

- Approximate the value of $\arctan 0,8$ by the Taylor polynomial of degree 3.

■ What is the biggest possible mistake we made in the approximation of $\arctan 0,8$?

Some further exercies

- How long does it take to double your investment if the interest is x percent? The rule of 70 (or 69, 68 or whatever).
- Use the third-degree Taylor polynomial in order to deduce the approximate value of $\sqrt[3]{30}$.
■ Use the Taylor polynomial at $x_{0}=0$ to deduce the approximate value of e with an error not higher than 0.001 .

