Math, Functions

Václav Mácha

University of Chemistry and Technology

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Basic notions Definition of a function

Let $f \subset (X \times Y)$ be such that $\forall x \in X, \ \forall y_1, y_2 \in Y, \ ((\langle x, y_1 \rangle \in f)\&(\langle x, y_2 \rangle \in f)) \Rightarrow (y_1 = y_2).$

э

Definition of a function Let $f \subset (X \times Y)$ be such that $\forall x \in X, \forall y_1, y_2 \in Y, ((\langle x, y_1 \rangle \in f) \& (\langle x, y_2 \rangle \in f)) \Rightarrow (y_1 = y_2).$ Then we say that f is a function which maps X to Y, we write $f : X \to Y$. A usual notation for $\langle x, y \rangle$ is f(x) = y or $f : x \mapsto y$.

Václav Mácha (UCT)

• • = • • = •

Definition of a function

Let $f
subset (X \times Y)$ be such that $\forall x \in X, \ \forall y_1, y_2 \in Y, \ ((\langle x, y_1 \rangle \in f) \& (\langle x, y_2 \rangle \in f)) \Rightarrow (y_1 = y_2).$ Then we say that f is a function which maps X to Y, we write $f : X \to Y$. A usual notation for $\langle x, y \rangle$ is f(x) = y or $f : x \mapsto y$. A domain is a set of all $x \in X$ for which there exists y such that f(x) = y. The domain of f is denoted by Dom f. The set of all $y \in Y$ for which there exists $x \in X$ such that f(x) = y is called range and it is denoted by Ran f.

Definition of a function

Let $f
subset (X \times Y)$ be such that $\forall x \in X, \ \forall y_1, y_2 \in Y, \ ((\langle x, y_1 \rangle \in f) \& (\langle x, y_2 \rangle \in f)) \Rightarrow (y_1 = y_2).$ Then we say that f is a function which maps X to Y, we write $f : X \to Y$. A usual notation for $\langle x, y \rangle$ is f(x) = y or $f : x \mapsto y$. A domain is a set of all $x \in X$ for which there exists y such that f(x) = y. The domain of f is denoted by Dom f. The set of all $y \in Y$ for which there exists $x \in X$ such that f(x) = y is called range and it is denoted by Ran f.

Examples: $\{\langle 1,1\rangle,\langle 1,2\rangle\}$ is not a function – the 'input' 1 has two possible outputs 1 and 2.

イロト イ理ト イヨト イヨト

Definition of a function

Let $f
subset (X \times Y)$ be such that $\forall x \in X, \ \forall y_1, y_2 \in Y, \ ((\langle x, y_1 \rangle \in f) \& (\langle x, y_2 \rangle \in f)) \Rightarrow (y_1 = y_2).$ Then we say that f is a function which maps X to Y, we write $f : X \to Y$. A usual notation for $\langle x, y \rangle$ is f(x) = y or $f : x \mapsto y$. A domain is a set of all $x \in X$ for which there exists y such that f(x) = y. The domain of f is denoted by Dom f. The set of all $y \in Y$ for which there exists $x \in X$ such that f(x) = y is called range and it is denoted by Ran f.

Examples: $\{\langle 1,1\rangle,\langle 1,2\rangle\}$ is not a function – the 'input' 1 has two possible outputs 1 and 2.

The set $f = \{\langle 1, 1 \rangle, \langle 2, 0 \rangle, \langle 3, 5 \rangle\}$ is a function. It can be also written as f(1) = 1, f(2) = 0 and f(3) = 5. It holds that $\text{Dom } f = \{1, 2, 3\}$ and $\text{Ran } f = \{0, 1, 5\}$.

▲□▶▲□▶▲□▶▲□▶ = つくで

Let $A \subset \text{Dom } f$. An image of A (denoted by f(A)) is a set defined as $f(A) = \{y \in \text{Ran } f, \exists x \in A, y = f(x)\}$ Let $B \subset \text{Ran } f$. A preimage of B (denoted by $f^{-1}(B)$) is a set defined as $f^{-1}(B) = \{x \in \text{Dom } f, \exists y \in B, y = f(x)\}$ Mention, please, that f^{-1} is still undefined (it will be done in a few minutes). In particular, $f^{-1}(B)$ has different meaning than $f^{-1}(y)$, $y \in \text{Ran } f$.

Observation: For every A, $B \subset \text{Dom } f$ it holds that $f(A \cup B) = f(A) \cup f(B)$.

æ

イロト イヨト イヨト イヨト

Observation: For every A, $B \subset \text{Dom } f$ it holds that $f(A \cup B) = f(A) \cup f(B)$. Proof: It holds that

$$(y \in f(A \cup B)) \Rightarrow (\exists x \in (A \cup B), y = f(x))$$

$$\Rightarrow ((\exists x \in A, y = f(x)) \lor (\exists x \in B, y = f(x)))$$

$$\Rightarrow ((y \in f(A)) \lor (y \in f(B))) \Rightarrow (y \in f(A) \cup f(B))$$

and we have just proven that $f(A \cup B) \subset (f(A) \cup f(B))$.

э

Observation: For every A, $B \subset \text{Dom } f$ it holds that $f(A \cup B) = f(A) \cup f(B)$. Proof: It holds that

$$(y \in f(A \cup B)) \Rightarrow (\exists x \in (A \cup B), y = f(x))$$

$$\Rightarrow ((\exists x \in A, y = f(x)) \lor (\exists x \in B, y = f(x)))$$

$$\Rightarrow ((y \in f(A)) \lor (y \in f(B))) \Rightarrow (y \in f(A) \cup f(B))$$

and we have just proven that $f(A \cup B) \subset (f(A) \cup f(B))$. On the other hand

$$\begin{aligned} (y \in f(A) \cup f(B)) &\Rightarrow ((y \in f(A)) \lor (y \in f(B))) \\ &\Rightarrow ((\exists x \in A, \ y = f(x)) \lor (\exists x \in B, \ y = f(x))) \\ &\Rightarrow (\exists x \in (A \cup B), \ y = f(x)) \Rightarrow (y \in f(A \cup B)) \end{aligned}$$

which yields $(f(A) \cup f(B)) \subset f(A \cup B)$. This concludes the proof.

イロト 不得 トイヨト イヨト

A function $f: X \to Y$ is said to be

- injective if $\forall x_1, x_2 \in \text{Dom } f$, $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$. (one-to-one)
- surjective, if $\operatorname{Ran} f = Y$, (onto)
- bijective, if it is surjective and injective.

A function $f: X \to Y$ is said to be

• injective if $\forall x_1, x_2 \in \text{Dom } f$, $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$. (one-to-one)

• surjective, if $\operatorname{Ran} f = Y$, (onto)

bijective, if it is surjective and injective.

Example: a function $f : \{1,2\} \rightarrow \{1\}$, f(1) = 1, f(2) = 1 is not injective (there are two arguments giving the same value), however, it is surjective. a function $f : \{1,2\} \mapsto \{1,2,3\}$, f(1) = 1, f(2) = 3 is injective, but not surjective (there is no argument giving the number 2).

イロト イ理ト イヨト イヨト

A function $f: X \to Y$ is said to be

• injective if $\forall x_1, x_2 \in \text{Dom } f$, $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$. (one-to-one)

• surjective, if $\operatorname{Ran} f = Y$, (onto)

bijective, if it is surjective and injective.

Example: a function $f : \{1, 2\} \rightarrow \{1\}$, f(1) = 1, f(2) = 1 is not injective (there are two arguments giving the same value), however, it is surjective. a function $f : \{1, 2\} \mapsto \{1, 2, 3\}$, f(1) = 1, f(2) = 3 is injective, but not surjective (there is no argument giving the number 2). Note that if $f : X \rightarrow Y$ is bijective, then Dom f has the same number of elements as Y (both sets have the same cardinality – for example, the sets of all natural numbers and of all even natural numbers have the same size).

・ロト ・四ト ・ヨト ・ ヨト ・ ヨ

Let $f : X \to Y$, $g : Y \to Z$ be such that $\operatorname{Ran} f \subset \operatorname{Dom} g$. Then we define a composition of f and g, $f \circ g : X \to Z$ as

$$g \circ f(x) = g(f(x)).$$

For example, take $f : \{1,2\} \rightarrow \{1,2,3\}$, f(1) = 2, f(2) = 3 and $g : \{1,2,3\} \rightarrow \{1,2\}$, g(1) = 2, g(2) = 1, g(3) = 2. Then

$$g \circ f : \{1,2\} \to \{1,2\}, g \circ f(1) = 1, \ g \circ f(2) = 2$$

and

$$f \circ g : \{1,2,3\} \rightarrow \{1,2,3\}, f \circ g(1) = 3, f \circ g(2) = 2, f \circ g(3) = 3.$$

(日)

A function $f : X \to X$, f(x) = x is called identity. Let $f : X \to Y$ be arbitrary. If there is $g : Y \to X$ such that $g \circ f(x) = x$ then g is called an inverse function to f and f is called an invertible function.

э

A function $f : X \to X$, f(x) = x is called identity. Let $f : X \to Y$ be arbitrary. If there is $g : Y \to X$ such that $g \circ f(x) = x$ then g is called an inverse function to f and f is called an invertible function.

Observation: Let $f : X \to Y$, Dom f = X. Then f is invertible iff f is injective.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

A function $f: X \to X$, f(x) = x is called identity.

Let $f : X \to Y$ be arbitrary. If there is $g : Y \to X$ such that $g \circ f(x) = x$ then g is called an inverse function to f and f is called an invertible function.

Observation: Let $f : X \to Y$, Dom f = X. Then f is invertible iff f is injective.

Let f be injective. Then $\forall y \in \operatorname{Ran} f \exists x \in X$ such that y = f(x). It suffices to define $f^{-1}(y) = x$.

Let f be not injective. There exists $x_1, x_2 \in X$, $x_1 \neq x_2$, such that $f(x_1) = f(x_2) = y$. Let $f^{-1}(y) = x_1$ – this is necessary to have $f^{-1}(f(x_1)) = x_1$. But then $f^{-1}(f(x_2)) = f^{-1}(y) = x_1 \neq x_2$ and f^{-1} is not an inverse function.

イロト イヨト イヨト イヨト 三日

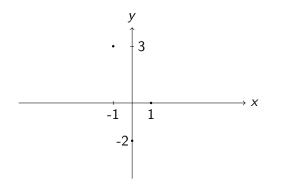
Let $A \subset X$. A function $f : X \to \{0, 1\}$ is called an indicator function if f(x) = 1 if $x \in A$ and f(x) = 0 if $x \notin A$. Such function is denoted by χ_A .

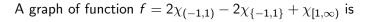
A function $f: X \mapsto \mathbb{R}$ is bounded from above if there is $M \in \mathbb{R}$ such that $f(x) \leq M$ for all $x \in \text{Dom } f$. It is bounded from below if there is $m \in \mathbb{R}$ such that $f(X) \geq m$ for all $x \in \text{Dom } f$. We say that f is bounded if it is bounded from below and from above.

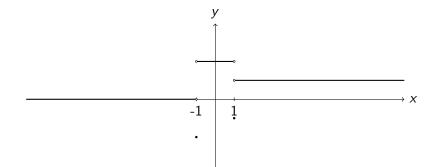
イロト イヨト イヨト イヨト

Real functions

We turn our attention to real functions, i.e., functions $f : \mathbb{R} \to \mathbb{R}$. A graph of such function is a subset of plane consisting of point $\langle x, f(x) \rangle$. For example, the graph of a function $f = \{\langle 1, 0 \rangle, \langle -1, 3 \rangle, \langle 0, -2 \rangle\}$ is the following







æ

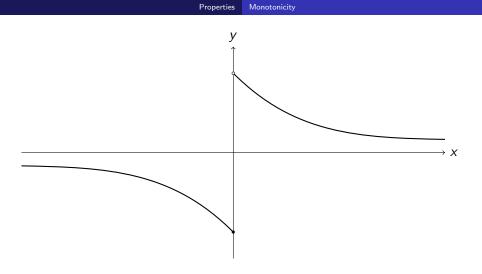
イロト イヨト イヨト イヨト

Properties Monotonicity

Let $f : \mathbb{R} \to \mathbb{R}$ and let $I \subset \text{Dom } f$. We say that f is on I

- increasing, if $\forall x_1, x_2 \in I$, $x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$,
- decreasing, if $\forall x_1, x_2 \in I$, $x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$,
- non-decreasing, if $\forall x_1, x_2 \in I$, $x_1 < x_2 \Rightarrow f(x_1) \leq f(x_2)$,
- non-increasing, if $\forall x_1, x_2 \in I$, $x_1 < x_2 \Rightarrow f(x_1) \geq f(x_2)$.

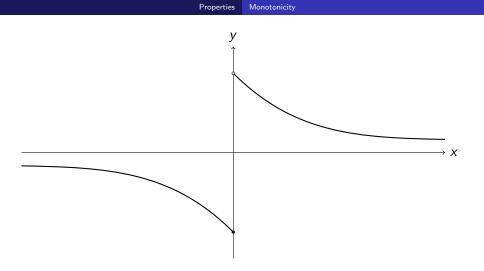
If f posses one of these properties we say that f is monotone.



This function is decreasing on an interval $(-\infty, 0]$ and it is decrasing on $(0, \infty)$.

æ

▶ ∢ ∃ ▶



This function is decreasing on an interval $(-\infty, 0]$ and it is decrasing on $(0, \infty)$. However, it is not monotone on whole \mathbb{R} . Indeed, it is enough to take $x_1 = -1$ and $x_2 = 1$. Clearly $f(x_1) < f(x_2)$ and the function may not be decreasing (even non-increasing).

Václav Mácha (UCT)

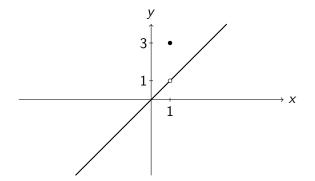
Continuity A function $f : \mathbb{R} \mapsto \mathbb{R}$ is said to be *continuous* at point $x_0 \in \text{Dom } f$ if

 $\forall \varepsilon > 0, \exists \delta > 0, \forall x \in (x_0 - \delta, x_0 + \delta) \cap \operatorname{Dom} f, \ |f(x) - f(x_0)| < \varepsilon.$

э

· < //l>

Take function $f(x) = x\chi_{\mathbb{R}\setminus\{1\}} + 3\chi_{\{1\}}$. Its graph is



This function is certainly continuous for every $x \in (-\infty, 1) \cap (1, \infty)$. However it is discontinuous at x = 1. A function $f : \mathbb{R} \mapsto \mathbb{R}$ is said to be *left-continuous* (resp. *right continuous*) at a point $x_0 \in \text{Dom } f$ if

 $\begin{aligned} \forall \varepsilon > 0, \exists \delta > 0, \forall x \in (x_0 - \delta, x_0) \cap \operatorname{Dom} f, \ |f(x) - f(x_0)| < \varepsilon \\ (\text{resp. } \forall \varepsilon > 0, \exists \delta > 0, \forall x \in (x_0, x_0 + \delta) \cap \operatorname{Dom} f, \ |f(x) - f(x_0)| < \varepsilon) \end{aligned}$

Further, we say that f is continuous on a set $S \subset \mathbb{R}$ if it is continuous at all of its points.

A B M A B M

Observation: Let f and g be functions continuous at x_0 . Then $f \pm g$ and $f \cdot g$ are also continuous at x_0 . Moreover, if $g(x_0) \neq 0$ then also $\frac{f}{g}$ is continuous at x_0 .

ヨトィヨト

Observation: Let f and g be functions continuous at x_0 . Then $f \pm g$ and $f \cdot g$ are also continuous at x_0 . Moreover, if $g(x_0) \neq 0$ then also $\frac{f}{g}$ is continuous at x_0 .

Proof: We prove it for f + g as f - g can be done similarly. Due to continuity we have $\forall \varepsilon > 0 \ \exists \delta_1 > 0$ and $\delta_2 > 0$ such that $|f(x) - f(x_0)| < \frac{\varepsilon}{2}$ and $|g(x) - g(x_0)| < \frac{\varepsilon}{2}$ whenever $|x - x_0| < \delta$. But this means that (due to the triangle inequality)

$$|f(x) + g(x) - (f(x_0) + g(x_0))| < |f(x) - f(x_0)| + |g(x) - g(x_0)| < \varepsilon.$$

A E A E A

Now we turn our attention to the product rule. First of all, since $f(x_0)$ is real and the function is continuous, there exists $\delta_1 > 0$ and $M_1 > 0$ such that $|f(x)| < M_1$ whenever $x \in (x_0 - \delta_1, x_0 + \delta_1) \cap \text{Dom } f$ (see exercises at the end of this lecture). Similarly, there exists $\delta_2 > 0$ and $M_2 > 0$ such that $|g(x)| < M_2$ whenever $x \in (x_0 - \delta_2, x_0 + \delta_2) \cap \text{Dom } f$. Due to continuity, for all $\varepsilon > 0$ there exists $\delta > 0$ such that $|f(x) - f(x_0)| < \frac{\varepsilon}{2M_2}$ and $|g(x) - g(x_0)| < \frac{\varepsilon}{2M_1}$ for all $x \in (x_0 - \delta, x_0 + \delta)$. We may moreover assume that $\delta < \min{\{\delta_1, \delta_2\}}$. Then we have

$$\begin{aligned} |f(x)g(x) - f(x_0)g(x_0)| &= |f(x)(g(x) - g(x_0)) + g(x_0)(f(x) - f(x_0))| \\ &\leq |f(x)||g(x) - g(x_0)| + |g(x_0)||f(x) - f(x_0)| < \varepsilon \end{aligned}$$

for all $x \in (x_0 - \delta, x_0 + \delta)$.

> < 문 > < 문 >

To prove the last claim it suffices to show that $\frac{1}{g}$ is continuous at x_0 and to use the just proven product rule. Without loss of generality, assume that $g(x_0) > 0$ and denote its value by $y_0 = g(x_0)$. Then, due to the continuity of g, there exists $\delta_1 > 0$ such that $g(x) > \frac{y_0}{2}$ for all $x \in (x_0 - \delta_1, x_0 + \delta_1) \cap \text{Dom } f$. Further, for each $\varepsilon > 0$ there exists $\delta > 0$ such that $|g(x) - g(x_0)| < y_0^2 \frac{\varepsilon}{2}$ for each $x \in (x_0 - \delta, x_0 + \delta)$ and, moreover, we assume that $\delta < \delta_1$. Then we have

$$\left|\frac{1}{g(x)} - \frac{1}{g(x_0)}\right| = \left|\frac{g(x_0) - g(x)}{g(x)g(x_0)}\right| \le \frac{|g(x_0) - g(x)|}{y_0 \frac{y_0}{2}} < \varepsilon$$

for each $x \in (x_0 - \delta, x_0 + \delta) \cap \text{Dom } f$. The proof is complete.

Parity and periodicity

Let $f : \mathbb{R} \to \mathbb{R}$ fulfill $\forall x \in \text{Dom } f$, $-x \in \text{Dom } f$. Then we say that

- f is odd if f(-x) = -f(x),
- f is even if f(-x) = f(x).

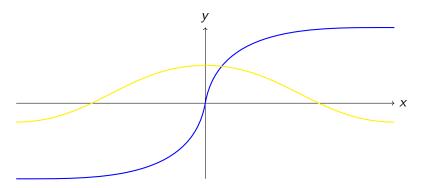
э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Parity and periodicity

Let $f : \mathbb{R} \to \mathbb{R}$ fulfill $\forall x \in \text{Dom } f$, $-x \in \text{Dom } f$. Then we say that

- f is odd if f(-x) = -f(x),
- f is even if f(-x) = f(x).



∃ ► < ∃ ►

Definition

A function $f : \mathbb{R} \to \mathbb{R}$ such that $\text{Dom } f = \mathbb{R}$ is called *periodic*, if there is a number l > 0 such that f(x) = f(x + l) for all $x \in \mathbb{R}$. The least number l with that property is called a *period* of a function f and f is then l-periodic.

We introduce a notion of a maximum and minimum of set $A \subset \mathbb{R}$.

Definition

Let sup A be an element of $A \subset \mathbb{R}$. Then sup A is the highest number of A (or a maximum of A) and we write sup $A = \max A$. Similarly, if inf A is an element of A, then inf A will be the lowest number of A (or a minimum of A) and we write inf $A = \min A$.

- E > - E >

We introduce a notion of a maximum and minimum of set $A \subset \mathbb{R}$.

Definition

Let sup A be an element of $A \subset \mathbb{R}$. Then sup A is the highest number of A (or a maximum of A) and we write sup $A = \max A$. Similarly, if inf A is an element of A, then inf A will be the lowest number of A (or a minimum of A) and we write inf $A = \min A$.

The minimum and maximum does not necessarily exists for a general set $A \subset \mathbb{R}$. For example, $A = \left\{\frac{1}{n}, n \in \mathbb{N}\right\}$ has maximum 1, however, minimum does not exists. The infimum 0 is not contained in this set.

We introduce a notion of a maximum and minimum of set $A \subset \mathbb{R}$.

Definition

Let sup A be an element of $A \subset \mathbb{R}$. Then sup A is the highest number of A (or a maximum of A) and we write sup $A = \max A$. Similarly, if inf A is an element of A, then inf A will be the lowest number of A (or a minimum of A) and we write inf $A = \min A$.

The minimum and maximum does not necessarily exists for a general set $A \subset \mathbb{R}$. For example, $A = \left\{\frac{1}{n}, n \in \mathbb{N}\right\}$ has maximum 1, however, minimum does not exists. The infimum 0 is not contained in this set. Note also that every set $A \subset \mathbb{R}$ with finitely many elements has its maximum and minimum.

Definition

Let f be continuous on an interval $I \subset \mathbb{R}$. Then we write $f \in \mathcal{C}(I)$.

æ

イロト イヨト イヨト イヨト

Theorem (Weierstrass)

Let $f \in C([a, b])$. Then f is bounded and there exists $t, u \in [a, b]$ such that $f(u) \leq f(x) \leq f(t)$ for all $x \in [a, b]$.

Actually, the previous theorem states that every function which is continuous on a closed interval attains its maximum and minimum value.

Theorem (Bolzano)

Let $f \in C([a, b])$ and f(a)f(b) < 0. Then there is $\eta \in (a, b)$ such that $f(\eta) = 0$.

æ

イロト イヨト イヨト イヨト

Theorem (Bolzano)

Let $f \in C([a, b])$ and f(a)f(b) < 0. Then there is $\eta \in (a, b)$ such that $f(\eta) = 0$.

One can then deduce that every continuous function has the Darboux property (or intermediate value property):

Definition

A function $f : \mathbb{R} \to \mathbb{R}$, whose Dom f is an interval, is said to have the Darboux property if for every $x, y \in \text{Dom } f$ and every $\tau \in (f(x), f(y))$ there exists $\varphi \in (x, y)$ such that $\tau = f(\varphi)$.

イロト イポト イヨト イヨト

Lemma

Let f be an odd function and $(-a, a) \subset \text{Dom } f$ for some a > 0. Then f(0) = 0.

æ

イロト イヨト イヨト イヨト

Elementary functions

Polynomials are function which arises from a constant function $f \equiv c$, $c \in \mathbb{R}$ and an identity function f(x) = x by finite number of multiplication and additions. In particular, every polynomial is of the form

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x^1 + a_0,$$

where $n \in \mathbb{N}$ and $a_0, \ldots, a_n \in \mathbb{R}$. The numbers a_0, \ldots, a_n are called coefficients. The degree of p(x) is n in a case $a_n \neq 0$ and we write Deg p = n. The term $a_n x^n$ is called a *leading term*. Recall that $p(x) = x^n$ is odd function for odd n and it is an even function for n even. The maximal domain of p(x) is always \mathbb{R} . All x such that p(x) = 0 are called *roots* of polynomial p. Let x_0 be a root of p(x). Then $p(x) = (x - x_0)q(x)$ where q(x) is a polynomial and it holds that Deg p(x) = Deg q(x) + 1.

イロト イポト イヨト イヨト 二日

A rational function is a fraction whose numerator and denominator are polynomials. I.e., a rational function f is of the form

$$f(x)=\frac{p(x)}{q(x)}.$$

The domain of f is all real numbers except roots of q(x).

э

イロト 不得 トイヨト イヨト

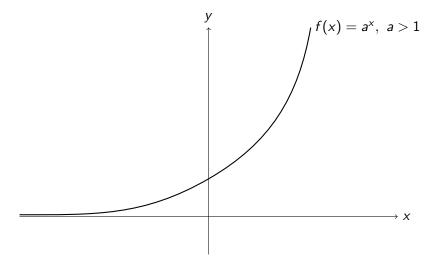
Exponential function

Consider a number a > 0. Let $n \in \mathbb{N}$, we define $a^n = a \cdot a \cdot \ldots \cdot a$ where a appears n times on the right hand side. Further, we define $a^{\frac{1}{n}}$ as such number b that $b^n = 1$. This allows to define a^r for all rational numbers $r \in Q$ (do not forget $a^{-r} = \frac{1}{a^r}$). Namely, let r > 0, we define $a^r = a^{\frac{p}{q}} = (a^p)^{\frac{1}{q}}$. For r < 0 we take $a^r = \frac{1}{a^{-r}}$. Finally, we are allowed to define uniquely a continuous function

$$f(x) = a^x \tag{1}$$

イロト イポト イヨト イヨト 二日

whose values are prescribed in the aforementioned way. Since the function is constant for $a \equiv 1$, we remove this value from our definition and we consider the relation (1) only for $a \in (0, 1) \cup (1, \infty)$. It holds that $\text{Dom } f = \mathbb{R}$ and $\text{Ran } f = (0, \infty)$. Further, f(0) = 1 (roughly speaking, every number powered to 0 equals one). The function is strictly increasing for a > 1 and strictly decreasing for a < 1.



Ξ.

イロト イヨト イヨト イヨト

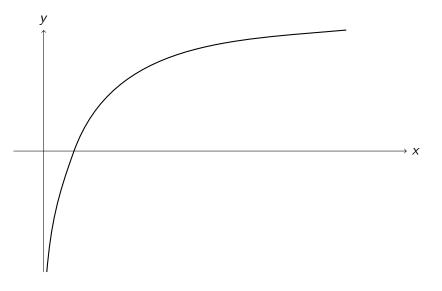
Logarithm

Since $x \mapsto a^x$ is injective there exists an inverse function. We will denote it by \log_a and it is called logarithm to base *a*. In particular

$$\log_a y = x \quad \Leftrightarrow \quad a^x = y.$$

Recall that $a \in (0,1) \cup (1,\infty)$ and, due to the properties of the inverse functions, Dom $\log_a = (0,\infty)$ and Ran $\log_a = \mathbb{R}$. Recall also, that since $a^0 = 1$, we have $\log_a 1 = 0$ for every $a \in (0,1) \cup (1,\infty)$.

The graph of $f(x) = log_a(x)$, a > 1 is the following



æ

(日) (四) (日) (日) (日)

Let e be Euler's number (this is an irrational number which will be defined later, its approximate value is 2.72). The logarithm to base e is called *natural logarithm* and, because of its importance, we omit the index e in its notation.

- E > - E >

Next, we define *nth root* $f(x) = \sqrt[n]{x}$ as an inverse to $g(x) = x^n$. Recall that g is invertible for n odd and $\text{Dom } g = \text{Ran } g = \mathbb{R}$. Thus, $\text{Dom } \sqrt[n]{x} = \text{Ran } \sqrt[n]{x} = \mathbb{R}$ for n odd.

However, g is not invertible for n even. In that case we have to restrict the domain of g to $[0, \infty)$ in order to have an injective function. The range of this restricted function is also $[0, \infty)$. As a consequence,

Dom
$$\sqrt[n]{x} = \operatorname{Ran} \sqrt[n]{x} = [0, \infty)$$
 for *n* even.

The nth root is always an increasing function.

• • = • • = •

There is just one pair of continuous functions s(x) and c(x) with the following properties

•
$$s(x)^2 + c(x)^2 = 1$$

• $s(x+y) = s(x)c(y) + c(x)s(y)$
• $c(x+y) = c(x)c(y) - s(x)s(y)$
• $0 < xc(x) < s(x) < x$ for all $x \in (0,1)$.

The function s is called sinus and the function c is called cosine. We also introduce notation $\sin x = s(x)$ and $\cos x = c(x)$. These functions have the following properties:

Dom $\sin x = \text{Dom } \cos x = \mathbb{R}$, Ran $\sin x = \text{Ran } \cos x = [-1, 1]$.

• $\sin x$ is an odd function, $\cos x$ is an even function.

• $\sin x$ and $\cos x$ are 2π periodic function.

There are several 'known' values of sin and cos:								
x =	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3}{2}\pi$	
sin x	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0	-1	
cos x	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	0	-

Besides, we define a function $\tan x = \frac{\sin x}{\cos x}$ (tangens) and a function $\cot x = \frac{\cos x}{\sin x}$ (cotangens). These functions are π -periodic, their range is \mathbb{R} and

Dom
$$\tan x = \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi, \ k \in \mathbb{Z} \right\}$$
, Dom $\cot x = \mathbb{R} \setminus \{k\pi, k \in \mathbb{Z}\}$.

Roughly speaking, cyclometric functions are inverse functions to the aforementioned trigonometric functions. However, every trigonometric function is periodic and thus it is not one-to-one. To obtain the inverse function, we have to restrict the domain of every trigonometric function. In particular, we define functions \sin_r , \cos_r , \tan_r and \cot_r as follows

$$\sin_r x = \sin x, \text{ Dom } \sin_r = [-\pi_2, \pi_2]$$
$$\cos_r x = \cos x, \text{ Dom } \cos_r = [0, \pi]$$
$$\tan_r x = \tan x, \text{ Dom } \tan_r = [-\pi_2, \pi_2]$$
$$\cot_r x = \cot x, \text{ Dom } \cot_r = [0, \pi]$$

Now, since these functions are injective, we may define

$$arcsin = sin_r^{-1}$$
$$arccos = cos_r^{-1}$$
$$arctan = tan_r^{-1}$$
$$arccot = cot_r^{-1}$$

Let write down several properties of each function:

- Dom $\arcsin = [-1, 1]$, Ran $\arcsin = \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, arcsin is an increasing function and $\arcsin(-1) = -\frac{\pi}{2}$, $\arcsin(0) = 0$ and $\arcsin(1) = \frac{\pi}{2}$
- Dom arccos = [-1,1], Ran arccos = [0, π], arccos is a decreasing function and arcsin(-1) = π, arcsin(0) = π/2 and arcsin(1) = 0.
- Dom $\arctan = \mathbb{R}$, Ran $\arctan = \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, arctan is an increasing function and $\arctan(0) = 0$.
- Dom arccot = ℝ, Ran arccot = (0, π), arccot is a decreasing function and arccot (0) = π/2.

3

• • = • • = •

Limits

Definition

A *limit point* of a set $S \subset \mathbb{R}$ is every point $x_0 \in \mathbb{R}$ such that for every $\delta > 0$ it holds that $((x_0 - \delta, x_0) \cup (x_0, x_0 + \delta)) \cap S \neq \emptyset$.

Consider, for example, $S = (0, 1) \cup \{2\}$. The set of all its limit point is a closed interval [0, 1].

• • = • • = •

Limits

Definition

A *limit point* of a set $S \subset \mathbb{R}$ is every point $x_0 \in \mathbb{R}$ such that for every $\delta > 0$ it holds that $((x_0 - \delta, x_0) \cup (x_0, x_0 + \delta)) \cap S \neq \emptyset$.

Consider, for example, $S = (0,1) \cup \{2\}$. The set of all its limit point is a closed interval [0, 1].

Definition

Let $f : \mathbb{R} \to \mathbb{R}$ and let x_0 be a limit point of Dom f. We say, that $A \in \mathbb{R}$ is a *limit of f at x*₀ if

$$\forall \varepsilon > 0, \ \exists \delta > 0, \ \forall x \in ((x_0 - \delta, x_0) \cup (x_0, x_0 + \delta)) \cap \mathrm{Dom}\, f, \ |f(x) - A| < \varepsilon.$$

We write

$$\lim_{x\to x_0}f(x)=A$$

イロト イヨト イヨト イヨト

\mathbb{R}^* modification:

Definition

Let $f: \mathbb{R} \to \mathbb{R}$ and let x_0 be a limit point of $\mathrm{Dom}\, f$. We say that $\lim_{x \to x_0} = \infty$ if

 $\forall M>0, \ \exists \delta>0, \ \forall x\in ((x_0-\delta,x_0)\cup (x_0,x_0+\delta))\cap \mathrm{Dom}\, f, \ f(x)>M.$

Further, we say that $\lim_{x\to x_0} f(x) = -\infty$ if $\lim_{x\to x_0} -f(x) = \infty$.

Definition

Lef $f : \mathbb{R} \to \mathbb{R}$ be defined at least on (c, ∞) for some c > 0. We say that $\lim_{x \to \infty} = A \in \mathbb{R}$ if

$$orall arepsilon > 0, \; \exists C > c, \; orall x \in (C,\infty), \; |f(x) - A| < arepsilon.$$

Further, we say that $\lim_{x\to\infty}=\infty$ if

$$\forall M > 0, \exists C > c, \forall x \in (C, \infty), f(x) > M.$$

Observation

Once the limit exists, it is determined uniquely.

Proof.

Let $\lim_{x\to x_0} f(x) = A$ and $\lim_{x\to x_0} f(x) = B$ for some different $A, B \in \mathbb{R}$. Take $\varepsilon = \frac{1}{3}|B - A|$. According to the definition of a limit, there exists $\delta > 0$ such that $|f(x) - A| < \varepsilon$ and, simultaneously, $|f(x) - B| < \varepsilon$ for some $x \in (x_0 - \delta, x_0 + \delta)$. We use the triangle inequality to deduce

$$|A - B| = |A - f(x) + f(x) - B| \le |A - f(x)| + |f(x) - B| \le \frac{2}{3}|A - B|.$$

The case of infinite limits is done by an obvious modification.

Observation

Let f be a function continuous in a limit point $x_0\in {\rm Dom}\, f$. Then

$$\lim_{x\to x_0}f(x)=f(x_0).$$

Proof.

Let $\varepsilon > 0$ be arbitrary. As f is continuous, there exists $\delta > 0$ such that $|f(x) - f(x_0)| < \varepsilon$ whenever $|x - x_0| < \varepsilon$, $x \in \text{Dom } f$. But that is exactly that δ which suits the definition of a limit.

Here we would like to emphasize that every elementary function from the previous chapter is continuous on its domain.

This is the first tool which allows a computation. For example

$$\lim_{x \to 3} x - 5 = -2.$$

æ

イロト イヨト イヨト イヨト

This is the first tool which allows a computation. For example

$$\lim_{x\to 3} x - 5 = -2.$$

Consider for example a function $f(x) = \frac{x^2+4x+3}{x^2-1}$. This function is clearly not defined at points -1 and 1 and is continuous everywhere else. Anyway, we may compute

$$\lim_{x \to -1} \frac{x^2 + 4x + 3}{x^2 - 1} = \lim_{x \to -1} \frac{(x+1)(x+3)}{(x-1)(x+1)} = \lim_{x \to -1} \frac{x+3}{x-1} = -1$$

イロト イヨト イヨト -

Definition

Let x_0 be a limit point of Dom f. We say that $A \in \mathbb{R}$ is a *left-sided limit* of f at x_0 (resp. *right-sided limit* of f in x_0) if

$$orall arepsilon > 0, \ \exists \delta > 0, \ orall x \in (x_0 - \delta, x_0) \cap \mathrm{Dom}\, f, \ |f(x) - A| < arepsilon.$$

(resp.

$$\forall \varepsilon > 0, \ \exists \delta > 0, \ \forall x \in (x_0, x_0 + \delta) \cap \text{Dom} f, \ |f(x) - A| < \varepsilon.)$$

We write

$$\lim_{x\to x_0-} f(x) = A \quad (\text{resp. } \lim_{x\to x_0+} f(x) = A).$$

The infinite limits are defined similarly.

3 1 4 3 1

Lemma (Arithmetic of limits)

Let $f, g : \mathbb{R} \mapsto \mathbb{R}$ and let x_0 be a limit point of Dom f and Dom g. Let, moreover, $c \in \mathbb{R}$. Then

$$\lim_{x \to x_0} (f(x) \pm g(x)) = \lim_{x \to x_0} f(x) \pm \lim_{x \to x_0} g(x)$$
$$\lim_{x \to x_0} cf(x) = c \lim_{x \to x_0} f(x)$$
$$\lim_{x \to x_0} (f(x)g(x)) = \lim_{x \to x_0} f(x) \lim_{x \to x_0} g(x)$$
$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)}$$
(2)

assuming the right hand side has meaning.

Indefinite values:

$$0\cdot\infty, \ \frac{0}{0}, \ \frac{\infty}{\infty}, \ \infty-\infty, \ 1^{\infty}, \ 0^{\infty}$$

Note that the arithmetic of limits holds also for the one-sided limits.

Václav Mácha (UCT)

Functions

Let compute a limit $\lim_{x\to\infty} \frac{x-1}{x-2}$. According to arithmetic of limits $\lim_{x\to\infty} x - 1 = \infty$ and $\lim_{x\to\infty} x - 2 = \infty$. However, we cannot write that

$$\lim_{x\to\infty}\frac{x-1}{x-2}=\frac{\infty}{\infty}$$

as we get an indefinite term. The trick here is to simplify by the most rapidly growing summand in the denominator:

$$\lim_{x \to \infty} \frac{x-1}{x-2} = \lim_{x \to \infty} \frac{1 - \frac{1}{x}}{1 - \frac{2}{x}} = \frac{1 - 0}{1 - 2 \cdot 0} = 1.$$

• • = • • = •

Observation

Let $\lim_{x\to x_0} f(x) = A$ for some $x_0 \in \mathbb{R}$ and $A \in \mathbb{R}^*$. Then also $\lim_{x\to x_0-} f(x) = A$ and $\lim_{x\to x_0+} f(x) = A$.

Let consider $\lim_{x\to 0} \frac{1}{x}$. We are going to show that $\lim_{x\to 0^-} \frac{1}{x} = -\infty$ and $\lim_{x\to 0^+} \frac{1}{x} = +\infty$. In such case, $\lim_{x\to 0} \frac{1}{x}$ does not exist according to the just mentioned observation.

Let K > 0. We take $\delta = \frac{1}{K}$ and, consequently, for all $x \in (0, \delta)$ it holds that $f(x) = \frac{1}{x} > \frac{1}{\delta} = K$ and $\lim_{x \to 0^+} \frac{1}{x} = \infty$. Similarly, for all $x \in (-\delta, 0)$ it holds that $f(x) = \frac{1}{x} < \frac{1}{\delta} = -K$ and thus $\lim_{x \to 0^-} \frac{1}{x} = -\infty$.

《曰》《聞》《臣》《臣》 三臣

Few exercises

$$\lim_{x \to 2} \frac{x^3 + x - 2}{x^2 + 1}$$
$$\lim_{x \to 2} \frac{x^3 + 3x - 14}{x^2 - 4x + 4}$$
$$\lim_{x \to -2} \frac{x^3 + 4x^2 - 8}{x^2 + 5x + 6}$$
$$\lim_{x \to \infty} \frac{x^4 - 5x}{x^2}$$
$$\lim_{x \to 1} \frac{x + 3}{x^2 - 2x + 1}$$

æ

イロト イヨト イヨト イヨト

If
$$\lim_{x\to\infty} a^x = \infty$$
 for $a > 1$,

- $\lim_{x\to\infty} \log_a x = \infty$ for a > 1,
- $\lim_{x\to 0^+} \log_a x = -\infty$ for a > 1,
- $Iim_{x \to \frac{\pi}{2}-} \tan x = \infty,$
- If $\lim_{x\to\infty} \arctan x = \frac{\pi}{2}$,
- If $\lim_{x\to\infty} \operatorname{arccot} x = 0$,
- $Iim_{x\to -\infty} \operatorname{arccot} x = \pi.$

э

The following limits are used without any further proofs:

There is a number e such that

$$\lim_{x\to 0}\frac{e^x-1}{x}=1.$$

We recall that e is the Euler number (the base of natural logarithm) whose value is approx. 2.72.

4 3 4 3 4 3 4

The following limits are used without any further proofs:

There is a number e such that

$$\lim_{x\to 0}\frac{e^x-1}{x}=1.$$

We recall that e is the Euler number (the base of natural logarithm) whose value is approx. 2.72.

Further,

$$\lim_{x\to 0}\frac{\sin x}{x}=1.$$

Finally,

$$\lim_{x\to 0}\frac{\log(x+1)}{x}=1.$$

- E - - E -

Lemma (Limit of composed function)

Let $\lim_{x\to x_0} g(x) = A$ and $\lim_{y\to A} f(y) = B$. Then

$$\lim_{x\to x_0}f(g(x))=B,$$

if at least one of the following is true:

- **1** f is continuous at the point A or
- 2 there is δ such that for all $x \in (x \delta, x_0) \cap (x_0, x + \delta)$ it holds that $g(x) \neq A$.

4 3 4 3 4 3 4 4

Let compute

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \lim_{x \to 0} \frac{\sin^2\left(\frac{x}{2}\right) + \cos^2\left(\frac{x}{2}\right) - \cos^2\left(\frac{x}{2}\right) + \sin^2\left(\frac{x}{2}\right)}{x^2}$$
$$= \lim_{x \to 0} \frac{2\sin^2\left(\frac{x}{2}\right)}{4\left(\frac{x}{2}\right)^2}$$

3

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

Let compute

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \lim_{x \to 0} \frac{\sin^2\left(\frac{x}{2}\right) + \cos^2\left(\frac{x}{2}\right) - \cos^2\left(\frac{x}{2}\right) + \sin^2\left(\frac{x}{2}\right)}{x^2}$$
$$= \lim_{x \to 0} \frac{2\sin^2\left(\frac{x}{2}\right)}{4\left(\frac{x}{2}\right)^2}$$

Now we are allowed to use the Lemma LOCF, note that $g(x) = \frac{x}{2}$ is injective and thus the assumptions of LOCF are fulfilled.

Let compute

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \lim_{x \to 0} \frac{\sin^2\left(\frac{x}{2}\right) + \cos^2\left(\frac{x}{2}\right) - \cos^2\left(\frac{x}{2}\right) + \sin^2\left(\frac{x}{2}\right)}{x^2}$$
$$= \lim_{x \to 0} \frac{2\sin^2\left(\frac{x}{2}\right)}{4\left(\frac{x}{2}\right)^2}$$

Now we are allowed to use the Lemma LOCF, note that $g(x) = \frac{x}{2}$ is injective and thus the assumptions of LOCF are fulfilled. Thus

$$\lim_{x \to 0} \frac{2\sin^2\left(\frac{x}{2}\right)}{4\left(\frac{x}{2}\right)^2} = \frac{1}{2}\lim_{x \to 0} \frac{\sin\left(\frac{x}{2}\right)}{\frac{x}{2}} \frac{\sin\left(\frac{x}{2}\right)}{\frac{x}{2}}$$
$$\stackrel{AL}{=} \frac{1}{2}\lim_{x \to 0} \frac{\sin\left(\frac{x}{2}\right)}{\frac{x}{2}}\lim_{x \to 0} \frac{\sin\left(\frac{x}{2}\right)}{\frac{x}{2}}\lim_{x \to 0} \frac{\sin\left(\frac{x}{2}\right)}{\frac{x}{2}} \lim_{x \to 0} \frac{x}{2} \lim$$

イロト イヨト イヨト

Lemma (Sandwich Lemma)

Let $x_0 \in \mathbb{R}$ and let there is $\delta > 0$ such that

$$f(x) \leq g(x) \leq h(x), \ \forall x \in (x_0 - \delta, x_0) \cup (x_0, x_0 + \delta).$$

Then $\lim_{x\to x_0} f(x) = \lim_{x\to x_0} h(x) = A$ implies $\lim_{x\to x_0} g(x) = A$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let compute $\lim_{x\to 0} x \sin\left(\frac{1}{x}\right)$. It holds that

$$-|x| \le x \sin\left(\frac{1}{x}\right) \le |x|$$

for all x in, say, $(-1,0) \cup (0,1)$. Further,

$$\lim_{x \to 0} -|x| = \lim_{x \to 0} |x| = 0.$$

æ

Exercise:

 $\lim_{x\to\infty} \sin x$ $\lim_{x\to\infty} \frac{\sin x}{x}$ $\lim_{x \to 0} \frac{\sin(2x)}{x}$ $Iim_{x\to\infty} \frac{(x+1)^4}{(x+\sqrt{x})^3}$ $\lim_{x\to\infty} \sqrt{x} \left(\sqrt{2x} - \sqrt{2x-1} \right)$ $\blacksquare \lim_{x \to 1} \left(\frac{1}{1-x} - \frac{3}{1-x^3} \right)$ ■ $\lim_{x \to \infty} \frac{(\sqrt{x^2 + 1} + x)^2}{\sqrt[3]{x^6 + 1}}$ $\lim_{x\to 0} \frac{\tan x - \sin x}{x^3}$ $\lim_{x \to 0} \frac{\sin(2x)}{\sqrt{x+3}-\sqrt{3}}$

2

イロト イヨト イヨト ・ ヨトー

Relation between a limit and continuity Recall:

Lemma

A function $f : \mathbb{R} \to \mathbb{R}$ is continuous at $x_0 \in Domf$ if and only if $\lim_{x\to x_0} f(x) = f(x_0)$.

Exercises

- We saw that $f(x) = x\chi_{\mathbb{R}\setminus\{1\}} + 3\chi_{\{1\}}$ is not continuous.
- Decide about the continuity of $f(x) = \left(\frac{1}{x}\right) \chi_{[1,\infty)} + \left(\frac{(2x+2)(x-1)}{(x+2)(x-1)}\right) \chi_{(-\infty,1)}.$
- How about the continuity of $f(x) = e^{x} \chi_{(-\infty,0]} + \left(\frac{\sin(4x) - \sin(3x)}{4x - 3x}\right) \chi_{(0,\infty)}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

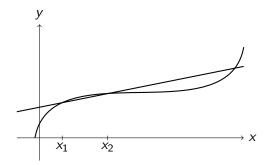
Let recall few facts of lines. Let have a line passing through two points $A = \langle a_1, a_2 \rangle$ and $B = \langle b_1, b_2 \rangle$ with $a_1 \neq b_1$. Then the slope of the line is a number $k = \frac{a_2 - b_2}{a_1 - b_1}$. The equation of the line has form

$$y = kx + q$$

where $q \in \mathbb{R}$ is determined such that the equation holds true for $y = a_2$ and $x = a_1$ (resp. $y = b_2$ and $y = b_1$).

▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Consider a graph of a function f(x), for example, of the following form



The equation of the line passing through point $\langle x_1, f(x_1) \rangle$ and $\langle x_2, f(x_2) \rangle$ is

$$y = \frac{f(x_2) - f(x_1)}{x_2 - x_1}(x - x_1) + f(x_1).$$

How to make a tangent line? Just simply tend with x_2 to x_1 . So the tangent line has equation

$$y = k(x - x_1) + f(x_1)$$

where

$$k = \lim_{x_2 \to x_1} \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

assuming the limit exists.

• • = • • = •

How to make a tangent line? Just simply tend with x_2 to x_1 . So the tangent line has equation

$$y = k(x - x_1) + f(x_1)$$

where

$$k = \lim_{x_2 \to x_1} \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

assuming the limit exists. We denote $h := x_2 - x_1$ and then we may write

$$k = \lim_{h \to 0} \frac{f(x_1 + h) - f(x_1)}{h}$$

æ

(日)

Observation

Let $f'(x_0)$ is real. Then f is continuous at x_0 .

Proof.

Indeed, it is enough to compute

$$\lim_{x \to x_0} f(x) - f(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} (x - x_0) = f'(x_0) \cdot 0 = 0.$$

Consequently, $\lim_{x\to x_0} f(x) = f(x_0)$ and the function is continuous at x_0 .

12

Let $f : \mathbb{R} \to \mathbb{R}$. We define

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$

We say that f' is derivative of f.

æ

▶ ★ 문 ► ★ 문 ►

Image: Image:

Let $f : \mathbb{R} \to \mathbb{R}$. We define

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$

We say that f' is derivative of f.

In particular, a derivative of f in a point x is a slope of the tangent line passing through $\langle x, f(x) \rangle$.

4 3 4 3 4 3 4

Let $f : \mathbb{R} \to \mathbb{R}$. We define

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$

We say that f' is derivative of f.

In particular, a derivative of f in a point x is a slope of the tangent line passing through $\langle x, f(x) \rangle$.

Let emphasize that f' does not exist for every function.

4 3 4 3 4 3 4

Exercise: Compute derivatives for:

■ $f(x) = x^n, n \in \mathbb{N}$ ■ $f(x) = e^x$ ■ $f(x) = \sin x$ ■ $f(x) = \cos x$ ■ $f(x) = \log x$

æ

To sum up:

f(x)	f'(x)	conditions
x ⁿ	nx^{n-1}	$n \in \mathbb{N}, x \in \mathbb{R}$
e^{x}	e^{x}	$x\in\mathbb{R}$
sin x	cos x	$x\in\mathbb{R}$
cos x	$-\sin x$	$x\in\mathbb{R}$
log x	$\frac{1}{x}$	$x\in (0,\infty)$

3

Let f and g be differentiable functions. Then

$$(f(x) \pm g(x))' = f'(x) \pm g'(x) (f(x)g(x))' = f'(x)g(x) + f(x)g'(x) \left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$$

if both sides have sense.

æ

Let f and g be differentiable functions. Then

$$(f(x) \pm g(x))' = f'(x) \pm g'(x) (f(x)g(x))' = f'(x)g(x) + f(x)g'(x) \left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$$

if both sides have sense.

Exercise

- Compute $(x^5 4x^3 + \log x)'$.
- Compute $(x^3 \sin x)'$.
- Compute $\left(\frac{xe^x}{\cos x}\right)'$.

æ

Exercise

• Compute $(\tan x)'$.

3

Let f and g be differentiable functions and let b = f(a). Then

$$(g \circ f)'(a) = g'(b)f'(a) = g'(f(a))f'(a).$$

æ

Let f and g be differentiable functions and let b = f(a). Then

$$(g \circ f)'(a) = g'(b)f'(a) = g'(f(a))f'(a).$$

Exercise: Compute

•
$$(e^{2x})'$$

• $(5^x)'$ (and generally $(a^x)'$)
• $(\cos(x^2))'$
• $(x^2\sqrt{x+1})'$
• $(\arctan x)'$ (hint: use the fact that $x = \arctan \circ \tan x$)

æ

To sum up, we present the following table:

-

f(x)	f'(x)	conditions
x ⁿ	nx ⁿ⁻¹	$n\in\mathbb{R}$, x as usual
e^{x}	e ^x	$x\in \mathbb{R}$
a ^x	log a a ^x	$a\in(0,1)\cup(1,\infty)$, $x\in\mathbb{R}$
log x	$\frac{1}{x}$	$x\in(0,\infty)$
sin x	cos x	$x\in\mathbb{R}$
cos x	$-\sin x$	$x\in\mathbb{R}$
tan x	$\frac{1}{\cos^2 x}$	$x\in \mathbb{R}\setminus \{rac{\pi}{2}+k\pi,k\in \mathbb{Z}\}$
cot x	$-\frac{1}{\sin^2 x}$	$x\in \mathbb{R}\setminus \{k\pi,k\in \mathbb{Z}\}$
arctan x	$\frac{1}{1+x^2}$	$x\in\mathbb{R}$
$\operatorname{arccot} x$	$-\frac{1}{1+x^2}$	$x\in\mathbb{R}$
arcsin x	$\frac{1}{\sqrt{1-x^2}}$	$x\in(-1,1)$
arccos x	$-\frac{1}{\sqrt{1-x^2}}$	$x\in (-1,1)$

æ

Exercises

- Write the equation of the tangent line to the graph of $f(x) = x^2 + 5x + 8$ at a point $x_0 = -2$, $y_0 = ?$.
- Find all tangent lines to the graph of f(x) = x + ¹/_{x²} which are parallel to the line y = -2x.

• • = • • = •

Exercises

- Write the equation of the tangent line to the graph of $f(x) = x^2 + 5x + 8$ at a point $x_0 = -2$, $y_0 = ?$.
- Find all tangent lines to the graph of f(x) = x + ¹/_{x²} which are parallel to the line y = -2x.

As a matter of fact, the formula for the tangent line is

$$y = f'(x_0)(x - x_0) + y_0$$

where x_0 and y_0 is the point of tangency.

- A IB M - A IB M - -

We say that $f:\mathbb{R}\to\mathbb{R}$ attains its local maximum at a point $x_0\in\mathrm{Dom}\,f$ if

$$\exists \delta > 0, \ \forall x \in (x_0 - \delta, x_0 + \delta) \cap \text{Dom} f, \ f(x) \leq f(x_0).$$

æ

We say that $f : \mathbb{R} \to \mathbb{R}$ attains its local maximum at a point $x_0 \in \text{Dom } f$ if

$$\exists \delta > 0, \ \forall x \in (x_0 - \delta, x_0 + \delta) \cap \text{Dom} f, \ f(x) \leq f(x_0).$$

Lemma

Let f be defined on an interval (a, b) let it attains its local maximum (resp. minimum) in a point $x_0 \in (a, b)$, and let $f'(x_0)$ exist. Then $f'(x_0) = 0$.

Example:

Find all points where the function

$$f(x) = x^2 e^x$$

may attend its local maximum or minimum.

We say that $f : \mathbb{R} \to \mathbb{R}$ attains its local maximum at a point $x_0 \in \operatorname{Dom} f$ if

$$\exists \delta > 0, \ \forall x \in (x_0 - \delta, x_0 + \delta) \cap \text{Dom} f, \ f(x) \leq f(x_0).$$

Lemma

Let f be defined on an interval (a, b) let it attains its local maximum (resp. minimum) in a point $x_0 \in (a, b)$, and let $f'(x_0)$ exist. Then $f'(x_0) = 0$.

Example:

Find all points where the function

$$f(x) = x^2 e^x$$

may attend its local maximum or minimum.

Definition

The point x_0 for which $f'(x_0) = 0$ is called a *stationary point*.

Let x_0 be a stationary point and let $f \in C^2$ (meaning: f has continuous second derivatives). Then

- **1** if $f''(x_0) > 0$, the function has a local minimum at x_0 ,
- 2 if $f''(x_0) < 0$, the function has a local maximum at x_0 ,
- 3 if $f''(x_0) = 0$, we do not know anything.

Let x_0 be a stationary point and let $f \in C^2$ (meaning: f has continuous second derivatives). Then

- **1** if $f''(x_0) > 0$, the function has a local minimum at x_0 ,
- 2 if $f''(x_0) < 0$, the function has a local maximum at x_0 ,
- 3 if $f''(x_0) = 0$, we do not know anything.

Example:

Finish the previous example, i.e., clasiffy the extremes of $f(x) = x^2 e^x$.

Maximum of $f : \mathbb{R} \to \mathbb{R}$ on $[a, b] \subset \mathbb{R}$ is attained in $x_0 \in [a, b]$ if $f(x_0) \ge f(x)$ for every $x \in [a, b]$. Similarly, minimum of f is attained in $x_1 \in [a, b]$ if $f(x_1) \le f(x)$ for every $x \in [a, b]$.

Example:

Find the maximum and minimum of

$$f(x) = 2x^3 - 3x^2 - 12x + 8$$
 on $[-3, 3]$.

- E > - E >

Let $f \in C^1$ and let $[a, b] \subset \text{Dom } f$.

- 1 If f'(x) > 0 for every $x \in (a, b)$, then f is increasing on [a, b].
- 2 If f'(x) < 0 for every $x \in (a, b)$, then f is decreasing on [a, b].
- 3 If $f'(x) \ge 0$ for every $x \in (a, b)$, then f is non-decreasing on [a, b].
- 4 If $f'(x) \le 0$ for every $x \in (a, b)$, then f is non-increasing on [a, b].

Exercise

Find local extremes of $f(x) = 12x^5 - 15x^4 - 40x^3 + 60$. Determine the maximal intervals of monotonicity.

We say that $f : \mathbb{R} \to \mathbb{R}$ is convex on a set $I \subset \text{Dom } f$ if for all $x, y, z \in I$, x < y < z it holds that

$$\frac{f(y)-f(x)}{y-x} < \frac{f(z)-f(y)}{z-y}$$

We say that f is concave on I if -f is convex on I.

Definition

We say that $x \in \mathbb{R}$ is a point of inflection of $f : \mathbb{R} \to \mathbb{R}$ if f is continuous at x and there is $\delta > 0$ such that one of the following appears

- **1** *f* is concave on $(x \delta, x)$ and convex on $(x, x + \delta)$ or
- **2** *f* is convex on $(x \delta, x)$ and concave on $(x, x + \delta)$.

A 3 6 A 3 6 6 7

Observation

Let $f \in C(I)$ for some interval $I \subset \mathbb{R}$. Assume that f''(x) exists for all $x \in I$.

- 1 If f''(x) > 0 for all $x \in I$ then f is convex on I.
- 2 If f''(x) < 0 for all $x \in I$ then f is concave on I.

Example

Find the interval of convexity and concavity of $f(x) = \frac{1}{x^3} + \frac{1}{x^2}$, find its points of inflection.

4 3 4 3 4 3 4

Asymptotes:

Definition

Let $\lim_{x\to\infty} \frac{f(x)}{x} = k_+ \in \mathbb{R}$ and let $\lim_{x\to\infty} f(x) - k_+ x = q_+$. Then an asymptote at ∞ is a line with equation $y = k_+ x + q_+$. Let $\lim_{x\to-\infty} \frac{f(x)}{x} = k_- \in \mathbb{R}$ and let $\lim_{x\to-\infty} f(x) - k_- x = q_-$. Then an asymptote at $-\infty$ is a line with equation $y = k_- x + q_-$.

Exercises:

- Find the asymptotes of $f(x) = e^x + x + 1$.
- Find the asymptotes of $f(x) = \frac{x^3 x^2}{x^2 + 1}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The course of a function Now we are ready to describe the problem of the course of function. The task 'examine the course of the following function' consists of the following sub-tasks:

- **1** To find out the domain, to determine whether the function is even, odd or periodic.
- **2** To find intersections with axes.
- **3** To examine the behavior of the function at the edges of the domain.
- **4** To derive function, to determine sets where the function is increasing and decreasing, to determine extremes.
- **5** To differentiate the function for the second time, to determine sets where the function is concave, convex, to determine points of inflection.
- 6 To sketch a graph of the function.

Exercise:

• Examine the course of
$$f(x) = \frac{x^2+3}{x-1}$$
.

Further exercises

- Examine the course of $f(x) = 3x^5 5x^3$.
- Examine the course of $f(x) = x^2 + \frac{1}{x^2}$.
- Examine the course of $f(x) = \frac{|x-1|}{x+2}$.
- Examine the course of $f(x) = (x 4)\sqrt[3]{x}$.
- Examine the course of $f(x) = 3 + \sin x \cos x$.

э

Lemma (l'Hospital)

Let f and g have finite derivatives for all $x\in(a,b)\subset\mathbb{R}.$ Assume $g'(x)\neq 0$ and

$$\lim_{x\to a+}\frac{f'(x)}{g'(x)}=A\in\mathbb{R}^*.$$

Let moreover one of the following is true:

1 $\lim_{x\to a+} f(x) = 0$ and $\lim_{x\to a+} g(x) = 0$ or 2 $\lim_{x\to a+} |g(x)| = \infty$. Then

$$\lim_{x\to a+}\frac{f(x)}{g(x)}=A.$$

Obviously, the same true is also for $x \rightarrow b-$.

A 3 6 A 3 6 6 7

Compute:

1
$$\lim_{x\to 2} \frac{x^2-4}{x^2-x-2}$$

2 $\lim_{x\to 0} \frac{x \sin x}{1-\cos x^2}$
3 $\lim_{x\to \infty} \frac{x}{\sqrt{x^2+1}}$

4 $\lim_{x \to \frac{\pi}{4}-} \tan(2x) \log(\tan x)$ 5 $\lim_{x \to 0} \left(\frac{x-1}{2x^2} - \frac{1}{x(e^{2x}-1)} \right)$ 6 $\lim_{x \to 0} (\cos(3x))^{\frac{1}{x^2}}$

イロト イ理ト イヨト イヨト

æ

Exercise

- Examine the course of $f(x) = \frac{\log x}{x} + 1$.
- Examine the course of $f(x) = (x+2)e^{\frac{1}{x}}$.
- Examine the course of $f(x) = (x+3)e^{x-2}$.
- Examine the course of $f(x) = x\sqrt{1-x^2}$.

э

• = • • = •

Definition (The Taylor polynomial)

Let f be n-times differentiable at point x_0 . Then the polynomial of the form

$$T_{f,x_0,n}(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \ldots + \frac{f^{(n)}}{n!}(x - x_0)^n = \sum_{j=0}^n \frac{f^{(i)}}{i!}(x - x_0)^j$$

is called the Taylor polynomial for f at point x_0 of degree n.

Example

• Write the fourth-degree Taylor polynomial for $f(x) = x \log x$ at point $x_0 = 1$.

Assume that f is (n + 1)-times differentiable at x_0 . Let $x \in \mathbb{R}$ be arbitrary and let f is (n + 1)-times differentiable on a closed interval I with edges at x_0 and x. Then there is ζ in between of x and x_0 such that

$$f(x) - T_{f,x_0,n}(x) = \frac{f^{(n+1)}(\zeta)}{(n+1)!}(x-x_0)^{n+1}.$$

Example

- Approximate the value of arctan 0, 8 by the Taylor polynomial of degree 3.
- What is the biggest possible mistake we made in the approximation of arctan 0, 8?

- E - - E -

Some further exercies

- How long does it take to double your investment if the interest is x percent? The rule of 70 (or 69, 68 or whatever).
- Use the third-degree Taylor polynomial in order to deduce the approximate value of $\sqrt[3]{30}$.
- Use the Taylor polynomial at $x_0 = 0$ to deduce the approximate value of *e* with an error not higher than 0.001.