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Definitions Function, domains and ranges

Basic notions
Definition of a function
Let f ⊂ (X × Y ) be such that
∀x ∈ X , ∀y1, y2 ∈ Y , ((⟨x , y1⟩ ∈ f )&(⟨x , y2⟩ ∈ f )) ⇒ (y1 = y2).

Then we say that f is a function which maps X to Y , we write
f : X → Y . A usual notation for ⟨x , y⟩ is f (x) = y or f : x 7→ y .
A domain is a set of all x ∈ X for which there exists y such that f (x) = y .
The domain of f is denoted by Dom f . The set of all y ∈ Y for which
there exists x ∈ X such that f (x) = y is called range and it is denoted by
Ran f .
Examples: {⟨1, 1⟩, ⟨1, 2⟩} is not a function – the ’input’ 1 has two possible
outputs 1 and 2.
The set f = {⟨1, 1⟩, ⟨2, 0⟩, ⟨3, 5⟩} is a function. It can be also written as
f (1) = 1, f (2) = 0 and f (3) = 5. It holds that Dom f = {1, 2, 3} and
Ran f = {0, 1, 5}.
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Václav Mácha (UCT) Functions 2 / 82



Definitions Function, domains and ranges

Basic notions
Definition of a function
Let f ⊂ (X × Y ) be such that
∀x ∈ X , ∀y1, y2 ∈ Y , ((⟨x , y1⟩ ∈ f )&(⟨x , y2⟩ ∈ f )) ⇒ (y1 = y2).
Then we say that f is a function which maps X to Y , we write
f : X → Y . A usual notation for ⟨x , y⟩ is f (x) = y or f : x 7→ y .
A domain is a set of all x ∈ X for which there exists y such that f (x) = y .
The domain of f is denoted by Dom f . The set of all y ∈ Y for which
there exists x ∈ X such that f (x) = y is called range and it is denoted by
Ran f .
Examples: {⟨1, 1⟩, ⟨1, 2⟩} is not a function – the ’input’ 1 has two possible
outputs 1 and 2.

The set f = {⟨1, 1⟩, ⟨2, 0⟩, ⟨3, 5⟩} is a function. It can be also written as
f (1) = 1, f (2) = 0 and f (3) = 5. It holds that Dom f = {1, 2, 3} and
Ran f = {0, 1, 5}.
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Definitions Image and preimage

Let A ⊂ Dom f . An image of A (denoted by f (A)) is a set defined as
f (A) = {y ∈ Ran f , ∃x ∈ A, y = f (x)}
Let B ⊂ Ran f . A preimage of B (denoted by f −1(B)) is a set defined as
f −1(B) = {x ∈ Dom f , ∃y ∈ B, y = f (x)}
Mention, please, that f −1 is still undefined (it will be done in a few
minutes). In particular, f −1(B) has different meaning than f −1(y),
y ∈ Ran f .
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Properties and operations Union of images

Observation: For every A, B ⊂ Dom f it holds that
f (A ∪ B) = f (A) ∪ f (B).

Proof: It holds that

(y ∈ f (A ∪ B)) ⇒ (∃x ∈ (A ∪ B), y = f (x))

⇒ ((∃x ∈ A, y = f (x)) ∨ (∃x ∈ B, y = f (x)))

⇒ ((y ∈ f (A)) ∨ (y ∈ f (B))) ⇒ (y ∈ f (A) ∪ f (B))

and we have just proven that f (A ∪ B) ⊂ (f (A) ∪ f (B)).
On the other hand

(y ∈ f (A) ∪ f (B)) ⇒ ((y ∈ f (A)) ∨ (y ∈ f (B)))

⇒ ((∃x ∈ A, y = f (x)) ∨ (∃x ∈ B, y = f (x)))

⇒ (∃x ∈ (A ∪ B), y = f (x)) ⇒ (y ∈ f (A ∪ B))

which yields (f (A) ∪ f (B)) ⊂ f (A ∪ B). This concludes the proof.
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Properties and operations Injection, Surjection and Bijection

A function f : X → Y is said to be

injective if ∀x1, x2 ∈ Dom f , f (x1) = f (x2) ⇒ x1 = x2. (one-to-one)

surjective, if Ran f = Y , (onto)

bijective, if it is surjective and injective.

Example: a function f : {1, 2} → {1}, f (1) = 1, f (2) = 1 is not injective
(there are two arguments giving the same value), however, it is surjective.
a function f : {1, 2} 7→ {1, 2, 3}, f (1) = 1, f (2) = 3 is injective, but not
surjective (there is no argument giving the number 2).
Note that if f : X → Y is bijective, then Dom f has the same number of
elements as Y (both sets have the same cardinality – for example, the sets
of all natural numbers and of all even natural numbers have the same size).
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Properties and operations composition

Let f : X → Y , g : Y → Z be such that Ran f ⊂ Dom g . Then we define
a composition of f and g , f ◦ g : X → Z as

g ◦ f (x) = g(f (x)).

For example, take f : {1, 2} → {1, 2, 3}, f (1) = 2, f (2) = 3 and
g : {1, 2, 3} → {1, 2}, g(1) = 2, g(2) = 1, g(3) = 2. Then

g ◦ f : {1, 2} → {1, 2}, g ◦ f (1) = 1, g ◦ f (2) = 2

and

f ◦ g : {1, 2, 3} → {1, 2, 3}, f ◦ g(1) = 3, f ◦ g(2) = 2, f ◦ g(3) = 3.
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Properties and operations Inverse function

A function f : X → X , f (x) = x is called identity.
Let f : X → Y be arbitrary. If there is g : Y → X such that g ◦ f (x) = x
then g is called an inverse function to f and f is called an invertible
function.

Observation: Let f : X → Y , Dom f = X . Then f is invertible iff f is
injective.
Let f be injective. Then ∀y ∈ Ran f ∃x ∈ X such that y = f (x). It
suffices to define f −1(y) = x .
Let f be not injective. There exists x1, x2 ∈ X , x1 ̸= x2, such that
f (x1) = f (x2) = y . Let f −1(y) = x1 – this is necessary to have
f −1(f (x1)) = x1. But then f −1(f (x2)) = f −1(y) = x1 ̸= x2 and f −1 is not
an inverse function.

Václav Mácha (UCT) Functions 7 / 82



Properties and operations Inverse function

A function f : X → X , f (x) = x is called identity.
Let f : X → Y be arbitrary. If there is g : Y → X such that g ◦ f (x) = x
then g is called an inverse function to f and f is called an invertible
function.

Observation: Let f : X → Y , Dom f = X . Then f is invertible iff f is
injective.

Let f be injective. Then ∀y ∈ Ran f ∃x ∈ X such that y = f (x). It
suffices to define f −1(y) = x .
Let f be not injective. There exists x1, x2 ∈ X , x1 ̸= x2, such that
f (x1) = f (x2) = y . Let f −1(y) = x1 – this is necessary to have
f −1(f (x1)) = x1. But then f −1(f (x2)) = f −1(y) = x1 ̸= x2 and f −1 is not
an inverse function.
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Properties and operations Indicator function and bounded functions

Let A ⊂ X . A function f : X → {0, 1} is called an indicator function if
f (x) = 1 if x ∈ A and f (x) = 0 if x /∈ A. Such function is denoted by χA.

A function f : X 7→ R is bounded from above if there is M ∈ R such that
f (x) ≤ M for all x ∈ Dom f . It is bounded from below if there is m ∈ R
such that f (X ) ≥ m for all x ∈ Dom f . We say that f is bounded if it is
bounded from below and from above.
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Properties and operations Indicator function and bounded functions

Real functions
We turn our attention to real functions, i.e., functions f : R → R.
A graph of such function is a subset of plane consisting of point ⟨x , f (x)⟩.
For example, the graph of a function f = {⟨1, 0⟩, ⟨−1, 3⟩, ⟨0,−2⟩} is the
following

x

y

1-1

3

-2
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Properties and operations Indicator function and bounded functions

A graph of function f = 2χ(−1,1) − 2χ{−1,1} + χ[1,∞) is

x

y

1-1
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Properties Monotonicity

Properties
Monotonicity
Let f : R → R and let I ⊂ Dom f . We say that f is on I

increasing, if ∀x1, x2 ∈ I , x1 < x2 ⇒ f (x1) < f (x2),

decreasing, if ∀x1, x2 ∈ I , x1 < x2 ⇒ f (x1) > f (x2),

non-decreasing, if ∀x1, x2 ∈ I , x1 < x2 ⇒ f (x1) ≤ f (x2),

non-increasing, if ∀x1, x2 ∈ I , x1 < x2 ⇒ f (x1) ≥ f (x2).

If f posses one of these properties we say that f is monotone.
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Properties Monotonicity

x

y

This function is decreasing on an interval (−∞, 0] and it is decrasing on
(0,∞).

However, it is not monotone on whole R. Indeed, it is enough to
take x1 = −1 and x2 = 1. Clearly f (x1) < f (x2) and the function may not
be decreasing (even non-increasing).
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Properties Continuity

Continuity
A function f : R 7→ R is said to be continuous at point x0 ∈ Dom f if

∀ε > 0,∃δ > 0, ∀x ∈ (x0 − δ, x0 + δ) ∩Dom f , |f (x)− f (x0)| < ε.
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Properties Continuity

Take function f (x) = xχR\{1} + 3χ{1}. Its graph is

x

y

1

1

3

This function is certainly continuous for every x ∈ (−∞, 1) ∩ (1,∞).
However it is discontinuous at x = 1.
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Properties Continuity

A function f : R 7→ R is said to be left-continuous (resp. right continuous)
at a point x0 ∈ Dom f if

∀ε > 0, ∃δ > 0,∀x ∈ (x0 − δ, x0) ∩Dom f , |f (x)− f (x0)| < ε

(resp. ∀ε > 0, ∃δ > 0,∀x ∈ (x0, x0 + δ) ∩Dom f , |f (x)− f (x0)| < ε)

Further, we say that f is continuous on a set S ⊂ R if it is continuous at
all of its points.
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Properties Continuity

Observation: Let f and g be functions continuous at x0. Then f ± g
and f · g are also continuous at x0. Moreover, if g(x0) ̸= 0 then also f

g is
continuous at x0.

Proof: We prove it for f + g as f − g can be done similarly. Due to
continuity we have ∀ε > 0 ∃δ1 > 0 and δ2 > 0 such that
|f (x)− f (x0)| < ε

2 and |g(x)− g(x0)| < ε
2 whenever |x − x0| < δ. But this

means that (due to the triangle inequality)

|f (x) + g(x)− (f (x0) + g(x0))| < |f (x)− f (x0)|+ |g(x)− g(x0)| < ε.
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Václav Mácha (UCT) Functions 16 / 82



Properties Continuity

Now we turn our attention to the product rule. First of all, since f (x0) is
real and the function is continuous, there exists δ1 > 0 and M1 > 0 such
that |f (x)| < M1 whenever x ∈ (x0 − δ1, x0 + δ1)∩Dom f (see exercises at
the end of this lecture). Similarly, there exists δ2 > 0 and M2 > 0 such
that |g(x)| < M2 whenever x ∈ (x0 − δ2, x0 + δ2) ∩Dom f . Due to
continuity, for all ε > 0 there exists δ > 0 such that |f (x)− f (x0)| < ε

2M2

and |g(x)− g(x0)| < ε
2M1

for all x ∈ (x0 − δ, x0 + δ). We may moreover
assume that δ < min{δ1, δ2}. Then we have

|f (x)g(x)− f (x0)g(x0)| = |f (x)(g(x)− g(x0)) + g(x0)(f (x)− f (x0))|
≤ |f (x)||g(x)− g(x0)|+ |g(x0)||f (x)− f (x0)| < ε

for all x ∈ (x0 − δ, x0 + δ).
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Properties Continuity

To prove the last claim it suffices to show that 1
g is continuous at x0 and

to use the just proven product rule. Without loss of generality, assume
that g(x0) > 0 and denote its value by y0 = g(x0). Then, due to the
continuity of g , there exists δ1 > 0 such that g(x) > y0

2 for all
x ∈ (x0 − δ1, x0 + δ1) ∩Dom f . Further, for each ε > 0 there exists δ > 0
such that |g(x)− g(x0)| < y20

ε
2 for each x ∈ (x0 − δ, x0 + δ) and,

moreover, we assume that δ < δ1. Then we have∣∣∣∣ 1

g(x)
− 1

g(x0)

∣∣∣∣ = ∣∣∣∣g(x0)− g(x)

g(x)g(x0)

∣∣∣∣ ≤ |g(x0)− g(x)|
y0

y0
2

< ε

for each x ∈ (x0 − δ, x0 + δ) ∩Dom f .
The proof is complete.
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Properties Parity and periodicity

Parity and periodicity
Let f : R → R fulfill ∀x ∈ Dom f , −x ∈ Dom f . Then we say that

f is odd if f (−x) = −f (x),

f is even if f (−x) = f (x).

x

y
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Properties Parity and periodicity

Definition

A function f : R → R such that Dom f = R is called periodic, if there is a
number l > 0 such that f (x) = f (x + l) for all x ∈ R. The least number l
with that property is called a period of a function f and f is then
l−periodic.
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Properties Parity and periodicity

We introduce a notion of a maximum and minimum of set A ⊂ R.

Definition

Let supA be an element of A ⊂ R. Then supA is the highest number of A
(or a maximum of A) and we write supA = maxA. Similarly, if inf A is an
element of A, then inf A will be the lowest number of A (or a minimum of
A) and we write inf A = minA.

The minimum and maximum does not necessarily exists for a general set
A ⊂ R. For example, A =

{
1
n , n ∈ N

}
has maximum 1, however,

minimum does not exists. The infimum 0 is not contained in this set.
Note also that every set A ⊂ R with finitely many elements has its
maximum and minimum.
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maximum and minimum.
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Properties Parity and periodicity
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Václav Mácha (UCT) Functions 21 / 82



Continuous functions further properties

Definition

Let f be continuous on an interval I ⊂ R. Then we write f ∈ C(I ).
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Continuous functions further properties

Theorem (Weierstrass)

Let f ∈ C([a, b]). Then f is bounded and there exists t, u ∈ [a, b] such
that f (u) ≤ f (x) ≤ f (t) for all x ∈ [a, b].

Actually, the previous theorem states that every function which is
continuous on a closed interval attains its maximum and minimum value.

Václav Mácha (UCT) Functions 23 / 82



Continuous functions further properties

Theorem (Bolzano)

Let f ∈ C([a, b]) and f (a)f (b) < 0. Then there is η ∈ (a, b) such that
f (η) = 0.

One can then deduce that every continuous function has the Darboux
property (or intermediate value property):

Definition

A function f : R → R, whose Dom f is an interval, is said to have the
Darboux property if for every x , y ∈ Dom f and every τ ∈ (f (x), f (y)
there exists φ ∈ (x , y) such that τ = f (φ).
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Continuous functions further properties

Lemma

Let f be an odd function and (−a, a) ⊂ Dom f for some a > 0. Then
f (0) = 0.
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Elementary functions Polynomials

Elementary functions
Polynomials are function which arises from a constant function f ≡ c ,
c ∈ R and an identity function f (x) = x by finite number of multiplication
and additions. In particular, every polynomial is of the form

p(x) = anx
n + an−1x

n−1 + . . .+ a1x
1 + a0,

where n ∈ N and a0, . . . , an ∈ R. The numbers a0, . . . , an are called
coefficients. The degree of p(x) is n in a case an ̸= 0 and we write
Deg p = n. The term anx

n is called a leading term. Recall that p(x) = xn

is odd function for odd n and it is an even function for n even. The
maximal domain of p(x) is always R. All x such that p(x) = 0 are called
roots of polynomial p. Let x0 be a root of p(x). Then p(x) = (x − x0)q(x)
where q(x) is a polynomial and it holds that Deg p(x) = Deg q(x) + 1.
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Elementary functions Rational functions

A rational function is a fraction whose numerator and denominator are
polynomials. I.e., a rational function f is of the form

f (x) =
p(x)

q(x)
.

The domain of f is all real numbers except roots of q(x).
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Elementary functions Exponential function

Exponential function
Consider a number a > 0. Let n ∈ N, we define an = a · a · . . . · a where a
appears n times on the right hand side. Further, we define a

1
n as such

number b that bn = 1. This allows to define ar for all rational numbers
r ∈ Q (do not forget a−r = 1

ar ). Namely, let r > 0, we define

ar = a
p
q = (ap)

1
q . For r < 0 we take ar = 1

a−r . Finally, we are allowed to
define uniquely a continuous function

f (x) = ax (1)

whose values are prescribed in the aforementioned way. Since the function
is constant for a ≡ 1, we remove this value from our definition and we
consider the relation (1) only for a ∈ (0, 1) ∪ (1,∞). It holds that
Dom f = R and Ran f = (0,∞). Further, f (0) = 1 (roughly speaking,
every number powered to 0 equals one). The function is strictly increasing
for a > 1 and strictly decreasing for a < 1.
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Elementary functions Exponential function

x

y
f (x) = ax , a > 1
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Elementary functions Logarithm

Logarithm
Since x 7→ ax is injective there exists an inverse function. We will denote it
by loga and it is called logarithm to base a. In particular

loga y = x ⇔ ax = y .

Recall that a ∈ (0, 1) ∪ (1,∞) and, due to the properties of the inverse
functions, Dom loga = (0,∞) and Ran loga = R. Recall also, that since
a0 = 1, we have loga 1 = 0 for every a ∈ (0, 1) ∪ (1,∞).
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Elementary functions Logarithm

The graph of f (x) = loga(x), a > 1 is the following

x

y
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Elementary functions Logarithm

Let e be Euler’s number (this is an irrational number which will be defined
later, its approximate value is 2.72). The logarithm to base e is called
natural logarithm and, because of its importance, we omit the index e in
its notation.
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Elementary functions Irrational functions

Next, we define nth root f (x) = n
√
x as an inverse to g(x) = xn. Recall

that g is invertible for n odd and Dom g = Ran g = R. Thus,
Dom n

√
x = Ran n

√
x = R for n odd.

However, g is not invertible for n even. In that case we have to restrict the
domain of g to [0,∞) in order to have an injective function. The range of
this restricted function is also [0,∞). As a consequence,
Dom n

√
x = Ran n

√
x = [0,∞) for n even.

The nth root is always an increasing function.
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Elementary functions Trigonometric functions

There is just one pair of continuous functions s(x) and c(x) with the
following properties

s(x)2 + c(x)2 = 1

s(x + y) = s(x)c(y) + c(x)s(y)

c(x + y) = c(x)c(y)− s(x)s(y)

0 < xc(x) < s(x) < x for all x ∈ (0, 1).

The function s is called sinus and the function c is called cosine. We also
introduce notation sin x = s(x) and cos x = c(x). These functions have
the following properties:

Dom sin x = Dom cos x = R, Ran sin x = Ran cos x = [−1, 1].

sin x is an odd function, cos x is an even function.

sin x and cos x are 2π periodic function.

There are several ’known’ values of sin and cos:
x = 0 π

6
π
4

π
3

π
2 π 3

2π

sin x 0 1
2

√
2
2

√
3
2 1 0 −1

cos x 1
√
3
2

√
2
2

1
2 0 −1 0
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Elementary functions Trigonometric functions

Besides, we define a function tan x = sin x
cos x (tangens) and a function

cot x = cos x
sin x (cotangens). These functions are π−periodic, their range is

R and

Dom tan x = R \
{π

2
+ kπ, k ∈ Z

}
, Dom cot x = R \ {kπ, k ∈ Z} .
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Elementary functions Cyclometric functions

Roughly speaking, cyclometric functions are inverse functions to the
aforementioned trigonometric functions. However, every trigonometric
function is periodic and thus it is not one-to-one. To obtain the inverse
function, we have to restrict the domain of every trigonometric function.
In particular, we define functions sinr , cosr , tanr and cotr as follows

sinr x = sin x , Dom sinr = [−π2, π2]

cosr x = cos x , Dom cosr = [0, π]

tanr x = tan x , Dom tanr = [−π2, π2]

cotr x = cot x , Dom cotr = [0, π]

Now, since these functions are injective, we may define

arcsin = sin−1
r

arccos = cos−1
r

arctan = tan−1
r

arccot = cot−1
r
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Elementary functions Cyclometric functions

Let write down several properties of each function:

Dom arcsin = [−1, 1], Ran arcsin =
[
−π

2 ,
π
2

]
, arcsin is an increasing

function and arcsin(−1) = −π
2 , arcsin(0) = 0 and arcsin(1) = π

2

Dom arccos = [−1, 1], Ran arccos = [0, π], arccos is a decreasing
function and arcsin(−1) = π, arcsin(0) = π

2 and arcsin(1) = 0.

Dom arctan = R, Ran arctan =
(
−π

2 ,
π
2

)
, arctan is an increasing

function and arctan(0) = 0.

Domarccot = R, Ran arccot = (0, π), arccot is a decreasing
function and arccot (0) = π

2 .
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Limits Definition and properties

Limits

Definition

A limit point of a set S ⊂ R is every point x0 ∈ R such that for every
δ > 0 it holds that ((x0 − δ, x0) ∪ (x0, x0 + δ)) ∩ S ̸= ∅.

Consider, for example, S = (0, 1) ∪ {2}. The set of all its limit point is a
closed interval [0, 1].

Definition

Let f : R → R and let x0 be a limit point of Dom f . We say, that A ∈ R is
a limit of f at x0 if

∀ε > 0, ∃δ > 0, ∀x ∈ ((x0 − δ, x0) ∪ (x0, x0 + δ))∩Dom f , |f (x)−A| < ε.

We write
lim
x→x0

f (x) = A
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Václav Mácha (UCT) Functions 38 / 82



Limits Definition and properties

R∗ modification:

Definition

Let f : R → R and let x0 be a limit point of Dom f . We say that
limx→x0 = ∞ if

∀M > 0, ∃δ > 0, ∀x ∈ ((x0 − δ, x0) ∪ (x0, x0 + δ)) ∩Dom f , f (x) > M.

Further, we say that limx→x0 f (x) = −∞ if limx→x0 −f (x) = ∞.

Definition

Lef f : R → R be defined at least on (c,∞) for some c > 0. We say that
limx→∞ = A ∈ R if

∀ε > 0, ∃C > c , ∀x ∈ (C ,∞), |f (x)− A| < ε.

Further, we say that limx→∞ = ∞ if

∀M > 0, ∃C > c , ∀x ∈ (C ,∞), f (x) > M.
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Limits Definition and properties

Observation

Once the limit exists, it is determined uniquely.

Proof.

Let limx→x0 f (x) = A and limx→x0 f (x) = B for some different A,B ∈ R.
Take ε = 1

3 |B − A|. According to the definition of a limit, there exists
δ > 0 such that |f (x)− A| < ε and, simultaneously, |f (x)− B| < ε for
some x ∈ (x0 − δ, x0 + δ). We use the triangle inequality to deduce

|A− B| = |A− f (x) + f (x)− B| ≤ |A− f (x)|+ |f (x)− B| ≤ 2

3
|A− B|.

The case of infinite limits is done by an obvious modification.
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Limits Definition and properties

Observation

Let f be a function continuous in a limit point x0 ∈ Dom f . Then

lim
x→x0

f (x) = f (x0).

Proof.

Let ε > 0 be arbitrary. As f is continuous, there exists δ > 0 such that
|f (x)− f (x0)| < ε whenever |x − x0| < ε, x ∈ Dom f . But that is exactly
that δ which suits the definition of a limit.

Here we would like to emphasize that every elementary function from the
previous chapter is continuous on its domain.
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Limits Calculations

This is the first tool which allows a computation. For example

lim
x→3

x − 5 = −2.

Consider for example a function f (x) = x2+4x+3
x2−1

. This function is clearly
not defined at points −1 and 1 and is continuous everywhere else.
Anyway, we may compute

lim
x→−1

x2 + 4x + 3

x2 − 1
= lim

x→−1

(x + 1)(x + 3)

(x − 1)(x + 1)
= lim

x→−1

x + 3

x − 1
= −1
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Limits Calculations

Definition

Let x0 be a limit point of Dom f . We say that A ∈ R is a left-sided limit
of f at x0 (resp. right-sided limit of f in x0) if

∀ε > 0, ∃δ > 0, ∀x ∈ (x0 − δ, x0) ∩Dom f , |f (x)− A| < ε.

(resp.

∀ε > 0, ∃δ > 0, ∀x ∈ (x0, x0 + δ) ∩Dom f , |f (x)− A| < ε.)

We write
lim

x→x0−
f (x) = A (resp. lim

x→x0+
f (x) = A).

The infinite limits are defined similarly.
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Limits Calculations

Lemma (Arithmetic of limits)

Let f , g : R 7→ R and let x0 be a limit point of Dom f and Dom g . Let,
moreover, c ∈ R. Then

lim
x→x0

(f (x)± g(x)) = lim
x→x0

f (x)± lim
x→x0

g(x)

lim
x→x0

cf (x) = c lim
x→x0

f (x)

lim
x→x0

(f (x)g(x)) = lim
x→x0

f (x) lim
x→x0

g(x)

lim
x→x0

f (x)

g(x)
=

limx→x0 f (x)

limx→x0 g(x)

(2)

assuming the right hand side has meaning.

Indefinite values:

0 · ∞,
0

0
,
∞
∞

, ∞−∞, 1∞, 0∞

Note that the arithmetic of limits holds also for the one-sided limits.
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Limits Calculations

Let compute a limit limx→∞
x−1
x−2 . According to arithmetic of limits

limx→∞ x − 1 = ∞ and limx→∞ x − 2 = ∞. However, we cannot write
that

lim
x→∞

x − 1

x − 2
=

∞
∞

as we get an indefinite term. The trick here is to simplify by the most
rapidly growing summand in the denominator:

lim
x→∞

x − 1

x − 2
= lim

x→∞

1− 1
x

1− 2
x

=
1− 0

1− 2 · 0
= 1.
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Limits Calculations

Observation

Let limx→x0 f (x) = A for some x0 ∈ R and A ∈ R∗. Then also
limx→x0− f (x) = A and limx→x0+ f (x) = A.

Let consider limx→0
1
x . We are going to show that limx→0−

1
x = −∞ and

limx→0+
1
x = +∞. In such case, limx→0

1
x does not exist according to the

just mentioned observation.
Let K > 0. We take δ = 1

K and, consequently, for all x ∈ (0, δ) it holds
that f (x) = 1

x > 1
δ = K and limx→0+

1
x = ∞.

Similarly, for all x ∈ (−δ, 0) it holds that f (x) = 1
x < 1

δ = −K and thus
limx→0−

1
x = −∞.

Václav Mácha (UCT) Functions 46 / 82



Limits Calculations

Few exercises

lim
x→2

x3 + x − 2

x2 + 1

lim
x→2

x3 + 3x − 14

x2 − 4x + 4

lim
x→−2

x3 + 4x2 − 8

x2 + 5x + 6

lim
x→∞

x4 − 5x

x2

lim
x→1

x + 3

x2 − 2x + 1
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Limits Limits of elementary funcitons

limx→∞ ax = ∞ for a > 1,

limx→∞ loga x = ∞ for a > 1,

limx→0+ loga x = −∞ for a > 1,

limx→π
2
− tan x = ∞,

limx→∞ arctan x = π
2 ,

limx→∞ arccot x = 0,

limx→−∞ arccot x = π.

Václav Mácha (UCT) Functions 48 / 82



Limits Known limits

The following limits are used without any further proofs:

There is a number e such that

lim
x→0

ex − 1

x
= 1.

We recall that e is the Euler number (the base of natural logarithm)
whose value is approx. 2.72.

Further,

lim
x→0

sin x

x
= 1.

Finally,

lim
x→0

log(x + 1)

x
= 1.

Václav Mácha (UCT) Functions 49 / 82



Limits Known limits

The following limits are used without any further proofs:

There is a number e such that

lim
x→0

ex − 1

x
= 1.

We recall that e is the Euler number (the base of natural logarithm)
whose value is approx. 2.72.

Further,

lim
x→0

sin x

x
= 1.

Finally,

lim
x→0

log(x + 1)

x
= 1.

Václav Mácha (UCT) Functions 49 / 82



Limits Limit of composed function

Lemma (Limit of composed function)

Let limx→x0 g(x) = A and limy→A f (y) = B. Then

lim
x→x0

f (g(x)) = B,

if at least one of the following is true:

1 f is continuous at the point A or

2 there is δ such that for all x ∈ (x − δ, x0) ∩ (x0, x + δ) it holds that
g(x) ̸= A.

Václav Mácha (UCT) Functions 50 / 82



Limits Limit of composed function

Let compute

lim
x→0

1− cos x

x2
= lim

x→0

sin2
(
x
2

)
+ cos2

(
x
2

)
− cos2

(
x
2

)
+ sin2

(
x
2

)
x2

= lim
x→0

2 sin2
(
x
2

)
4
(
x
2

)2

Now we are allowed to use the Lemma LOCF, note that g(x) = x
2 is

injective and thus the assumptions of LOCF are fulfilled.Thus

lim
x→0

2 sin2
(
x
2

)
4
(
x
2

)2 =
1

2
lim
x→0

sin
(
x
2

)
x
2

sin
(
x
2

)
x
2

AL
=

1

2
lim
x→0

sin
(
x
2

)
x
2

lim
x→0

sin
(
x
2

)
x
2

LOCF
=

1

2
.
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Limits Limit of composed function
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x
2
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x
2
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x
2

sin
(
x
2
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x
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Limits Limit of composed function
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Limits Sandwich lemma

Lemma (Sandwich Lemma)

Let x0 ∈ R and let there is δ > 0 such that

f (x) ≤ g(x) ≤ h(x), ∀x ∈ (x0 − δ, x0) ∪ (x0, x0 + δ).

Then limx→x0 f (x) = limx→x0 h(x) = A implies limx→x0 g(x) = A.
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Limits Sandwich lemma

Let compute limx→0 x sin
(
1
x

)
. It holds that

−|x | ≤ x sin

(
1

x

)
≤ |x |

for all x in, say, (−1, 0) ∪ (0, 1). Further,

lim
x→0

−|x | = lim
x→0

|x | = 0.
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Limits Sandwich lemma

Exercise:

limx→∞ sin x

limx→∞
sin x
x

limx→0
sin(2x)
ex−1

limx→∞
(x+1)4

(x+
√
x)3

limx→∞
√
x
(√

2x −
√
2x − 1

)
limx→1

(
1

1−x − 3
1−x3

)
limx→∞

(
√
x2+1+x)2
3√x6+1

limx→0
tan x−sin x

x3

limx→0
sin(2x)√
x+3−

√
3
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Limits Continuity and limits

Relation between a limit and continuity
Recall:

Lemma

A function f : R → R is continuous at x0 ∈ Domf if and only if
limx→x0 f (x) = f (x0).

Exercises

We saw that f (x) = xχR\{1} + 3χ{1} is not continuous.

Decide about the continuity of

f (x) =
(
1
x

)
χ[1,∞) +

(
(2x+2)(x−1)
(x+2)(x−1)

)
χ(−∞,1).

How about the continuity of

f (x) = exχ(−∞,0] +
(
sin(4x)−sin(3x)

4x−3x

)
χ(0,∞)
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Limits Derivative - motivation

Let recall few facts of lines. Let have a line passing through two points
A = ⟨a1, a2⟩ and B = ⟨b1, b2⟩ with a1 ̸= b1. Then the slope of the line is a
number k = a2−b2

a1−b1
. The equation of the line has form

y = kx + q

where q ∈ R is determined such that the equation holds true for y = a2
and x = a1 (resp. y = b2 and y = b1).
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Limits Derivative - motivation

Consider a graph of a function f (x), for example, of the following form

x

y

x1 x2

The equation of the line passing through point ⟨x1, f (x1)⟩ and ⟨x2, f (x2)⟩ is

y =
f (x2)− f (x1)

x2 − x1
(x − x1) + f (x1).
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Limits Derivative - motivation

How to make a tangent line? Just simply tend with x2 to x1. So the
tangent line has equation

y = k(x − x1) + f (x1)

where

k = lim
x2→x1

f (x2)− f (x1)

x2 − x1

assuming the limit exists.

We denote h := x2 − x1 and then we may write

k = lim
h→0

f (x1 + h)− f (x1)

h
.
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Limits Derivative - motivation

Observation

Let f ′(x0) is real. Then f is continuous at x0.

Proof.

Indeed, it is enough to compute

lim
x→x0

f (x)− f (x0) = lim
x→x0

f (x)− f (x0)

x − x0
(x − x0) = f ′(x0) · 0 = 0.

Consequently, limx→x0 f (x) = f (x0) and the function is continuous at
x0.
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Limits Derivative - definition

Let f : R → R. We define

f ′(x) = lim
h→0

f (x + h)− f (x)

h
.

We say that f ′ is derivative of f .

In particular, a derivative of f in a point x is a slope of the tangent line
passing through ⟨x , f (x)⟩.
Let emphasize that f ′ does not exist for every function.
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Derivatives of elementary functions

Exercise: Compute derivatives for:

f (x) = xn, n ∈ N
f (x) = ex

f (x) = sin x

f (x) = cos x

f (x) = log x
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Derivatives of elementary functions

To sum up:

f (x) f ′(x) conditions

xn nxn−1 n ∈ N, x ∈ R
ex ex x ∈ R
sin x cos x x ∈ R
cos x − sin x x ∈ R
log x 1

x x ∈ (0,∞)
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Derivatives of elementary functions Derivative - computation

Lemma

Let f and g be differentiable functions. Then

(f (x)± g(x))′ = f ′(x)± g ′(x)

(f (x)g(x))′ = f ′(x)g(x) + f (x)g ′(x)(
f (x)

g(x)

)′
=

f ′(x)g(x)− f (x)g ′(x)

(g(x))2

if both sides have sense.

Exercise

Compute
(
x5 − 4x3 + log x

)′
.

Compute
(
x3 sin x

)′
.

Compute
(

xex

cos x

)′
.
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Derivatives of elementary functions Derivative - computation

Exercise

Compute (tan x)′.
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Derivatives of elementary functions Derivative - computation

Lemma

Let f and g be differentiable functions and let b = f (a). Then

(g ◦ f )′(a) = g ′(b)f ′(a) = g ′(f (a))f ′(a).

Exercise: Compute(
e2x

)′
(5x)′ (and generally (ax)′)(
cos(x2)

)′(
x2
√
x + 1

)′
(arctan x)′ (hint: use the fact that x = arctan ◦ tan x)
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Derivatives of elementary functions Derivative - computation
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Derivatives of elementary functions Derivative - table of elementary functions

To sum up, we present the following table:

f (x) f ′(x) conditions

xn nxn−1 n ∈ R, x as usual
ex ex x ∈ R
ax log a ax a ∈ (0, 1) ∪ (1,∞), x ∈ R

log x 1
x x ∈ (0,∞)

sin x cos x x ∈ R
cos x − sin x x ∈ R
tan x 1

cos2 x
x ∈ R \ {π

2 + kπ, k ∈ Z}
cot x − 1

sin2 x
x ∈ R \ {kπ, k ∈ Z}

arctan x 1
1+x2

x ∈ R
arccot x − 1

1+x2
x ∈ R

arcsin x 1√
1−x2

x ∈ (−1, 1)

arccos x − 1√
1−x2

x ∈ (−1, 1)
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Derivatives of elementary functions Derivative - tangent line

Exercises

Write the equation of the tangent line to the graph of
f (x) = x2 + 5x + 8 at a point x0 = −2, y0 =?.

Find all tangent lines to the graph of f (x) = x + 1
x2

which are parallel
to the line y = −2x .

As a matter of fact, the formula for the tangent line is

y = f ′(x0)(x − x0) + y0

where x0 and y0 is the point of tangency.
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Derivatives of elementary functions Extremes

Definition

We say that f : R → R attains its local maximum at a point x0 ∈ Dom f if

∃δ > 0, ∀x ∈ (x0 − δ, x0 + δ) ∩Dom f , f (x) ≤ f (x0).

Lemma

Let f be defined on an interval (a, b) let it attains its local maximum (resp.
minimum) in a point x0 ∈ (a, b), and let f ′(x0) exist. Then f ′(x0) = 0.

Example:

Find all points where the function

f (x) = x2ex

may attend its local maximum or minimum.

Definition

The point x0 for which f ′(x0) = 0 is called a stationary point.
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Derivatives of elementary functions Extremes

Lemma

Let x0 be a stationary point and let f ∈ C 2 (meaning: f has continuous
second derivatives). Then

1 if f ′′(x0) > 0, the function has a local minimum at x0,

2 if f ′′(x0) < 0, the function has a local maximum at x0,

3 if f ′′(x0) = 0, we do not know anything.

Example:

Finish the previous example, i.e., clasiffy the extremes of f (x) = x2ex .
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Derivatives of elementary functions Extremes

Definition

Maximum of f : R → R on [a, b] ⊂ R is attained in x0 ∈ [a, b] if
f (x0) ≥ f (x) for every x ∈ [a, b]. Similarly, minimum of f is attained in
x1 ∈ [a, b] if f (x1) ≤ f (x) for every x ∈ [a, b].

Example:

Find the maximum and minimum of

f (x) = 2x3 − 3x2 − 12x + 8 on [−3, 3].
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Derivatives of elementary functions Monotonicity

Lemma

Let f ∈ C 1 and let [a, b] ⊂ Dom f .

1 If f ′(x) > 0 for every x ∈ (a, b), then f is increasing on [a, b].

2 If f ′(x) < 0 for every x ∈ (a, b), then f is decreasing on [a, b].

3 If f ′(x) ≥ 0 for every x ∈ (a, b), then f is non-decreasing on [a, b].

4 If f ′(x) ≤ 0 for every x ∈ (a, b), then f is non-increasing on [a, b].

Exercise

Find local extremes of f (x) = 12x5 − 15x4 − 40x3 + 60. Determine
the maximal intervals of monotonicity.
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Derivatives of elementary functions Curvature

Definition

We say that f : R → R is convex on a set I ⊂ Dom f if for all x , y , z ∈ I ,
x < y < z it holds that

f (y)− f (x)

y − x
<

f (z)− f (y)

z − y
.

We say that f is concave on I if −f is convex on I .

Definition

We say that x ∈ R is a point of inflection of f : R → R if f is continuous
at x and there is δ > 0 such that one of the following appears

1 f is concave on (x − δ, x) and convex on (x , x + δ) or

2 f is convex on (x − δ, x) and concave on (x , x + δ).
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Derivatives of elementary functions Curvature

Observation

Let f ∈ C(I ) for some interval I ⊂ R. Assume that f ′′(x) exists for all
x ∈ I .

1 If f ′′(x) > 0 for all x ∈ I then f is convex on I .

2 If f ′′(x) < 0 for all x ∈ I then f is concave on I .

Example

Find the interval of convexity and concavity of f (x) = 1
x3

+ 1
x2
, find

its points of inflection.
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Derivatives of elementary functions The course of function

Asymptotes:

Definition

Let limx→∞
f (x)
x = k+ ∈ R and let limx→∞ f (x)− k+x = q+. Then an

asymptote at ∞ is a line with equation y = k+x + q+.

Let limx→−∞
f (x)
x = k− ∈ R and let limx→−∞ f (x)− k−x = q−. Then an

asymptote at −∞ is a line with equation y = k−x + q−.

Exercises:

Find the asymptotes of f (x) = ex + x + 1.

Find the asymptotes of f (x) = x3−x2

x2+1
.
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Derivatives of elementary functions The course of function

The course of a function Now we are ready to describe the problem of
the course of function. The task ’examine the course of the following
function’ consists of the following sub-tasks:

1 To find out the domain, to determine whether the function is even,
odd or periodic.

2 To find intersections with axes.

3 To examine the behavior of the function at the edges of the domain.

4 To derive function, to determine sets where the function is increasing
and decreasing, to determine extremes.

5 To differentiate the function for the second time, to determine sets
where the function is concave, convex, to determine points of
inflection.

6 To sketch a graph of the function.

Exercise:

Examine the course of f (x) = x2+3
x−1 .
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Derivatives of elementary functions The course of function

Further exercises

Examine the course of f (x) = 3x5 − 5x3.

Examine the course of f (x) = x2 + 1
x2
.

Examine the course of f (x) = |x−1|
x+2 .

Examine the course of f (x) = (x − 4) 3
√
x .

Examine the course of f (x) = 3 + sin x cos x .
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Derivatives of elementary functions l’Hospital rule

Lemma (l’Hospital)

Let f and g have finite derivatives for all x ∈ (a, b) ⊂ R. Assume
g ′(x) ̸= 0 and

lim
x→a+

f ′(x)

g ′(x)
= A ∈ R∗.

Let moreover one of the following is true:

1 limx→a+ f (x) = 0 and limx→a+ g(x) = 0 or

2 limx→a+ |g(x)| = ∞.

Then

lim
x→a+

f (x)

g(x)
= A.

Obviously, the same true is also for x → b−.
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Derivatives of elementary functions l’Hospital rule

Compute:

1 limx→2
x2−4

x2−x−2

2 limx→0
x sin x

1−cos x2

3 limx→∞
x√
x2+1

4 limx→π
4
− tan(2x) log(tan x)

5 limx→0

(
x−1
2x2

− 1
x(e2x−1)

)
6 limx→0 (cos(3x))

1
x2
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Derivatives of elementary functions l’Hospital rule

Exercise

Examine the course of f (x) = log x
x + 1.

Examine the course of f (x) = (x + 2)e
1
x .

Examine the course of f (x) = (x + 3)ex−2.

Examine the course of f (x) = x
√
1− x2.
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Derivatives of elementary functions The Taylor polynomial

Definition (The Taylor polynomial)

Let f be n−times differentiable at point x0. Then the polynomial of the
form

Tf ,x0,n(x)

:= f (x0) +
f ′(x0)

1!
(x − x0) +

f ′′(x0)

2!
(x − x0)

2 + . . .+
f (n)

n!
(x − x0)

n

=
n∑

j=0

f (i)

i !
(x − x0)

i

is called the Taylor polynomial for f at point x0 of degree n.

Example

Write the fourth-degree Taylor polynomial for f (x) = x log x at point
x0 = 1.
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Derivatives of elementary functions The Taylor polynomial

Lemma

Assume that f is (n + 1)−times differentiable at x0. Let x ∈ R be
arbitrary and let f is (n + 1)−times differentiable on a closed interval I
with edges at x0 and x . Then there is ζ in between of x and x0 such that

f (x)− Tf ,x0,n(x) =
f (n+1)(ζ)

(n + 1)!
(x − x0)

n+1.

Example

Approximate the value of arctan 0, 8 by the Taylor polynomial of
degree 3.

What is the biggest possible mistake we made in the approximation of
arctan 0, 8?
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Derivatives of elementary functions The Taylor polynomial

Some further exercies

How long does it take to double your investment if the interest is x
percent? The rule of 70 (or 69, 68 or whatever).

Use the third-degree Taylor polynomial in order to deduce the
approximate value of 3

√
30.

Use the Taylor polynomial at x0 = 0 to deduce the approximate value
of e with an error not higher than 0.001.
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