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Functions of multiple variables Basic notions

Definition

Let M ⊂ Rn be a nonempty set. A real function of n variables defined on
a set M is a mapping f which uniquely assigns a real number y to every
pair (x1, . . . , xn) ∈ M. We use the notation

y = f (x1, . . . , xn).

To denote the function itself we use a notation f : M 7→ R. The set M is
called the domain of f and we write M = Dom f .

Usually, the function will be given only by its formula without any
specific domain. In that case, we assume that the domain is a maximal
set for which has the formula sense. For example, a function

f (x1, x2) = log(x1 + x2)

is defined on a set

Dom f = {(x1, x2) ∈ R2, x1 + x2 > 0}.
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Functions of multiple variables Basic notions

Example

Find (and sketch) a maximal set M ⊂ R2 of such pairs (x1, x2) for
which the function

f (x1, x2) =
1√

x2
1 + x2 − 1

.

Find (and sketch) the maximal domain of a function

f (x , y) =
√

1− log(y − x2).
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Functions of multiple variables Basic notions

Definition

Let z = f (x , y) be a function of two variables. The graph of f is a set

graphf = {(x , y , f (x , y) ∈ R3, (x , y) ∈ Dom f }.

Example

Sketch a graph of f (x , y) = −x − 2y + 3.

Sketch a graph of f (x , y) = x2 + y2.
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Functions of multiple variables Basic notions

Definition

A contour line C at height z0 ∈ R is a set

{(x , y) ∈ R2, f (x , y) = z0}.

Example

Find contour lines at heights z0 = −2,−1, 0, 1, 2 for a function

f (x , y) =
x2 + y2

2x
.

Find contour lines at heights z0 = −2,−1, 0, 1, 2 for a function

f (x , y) = (x + y) + |x + y |
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Functions of multiple variables Basic notions

Few words about algebra of function:
Sum, product and division is defined ’pointwisely’. Consider, for example,
functions f (x , y) = exy and g(x , y) =

√
1− x2 − y2. Then

(f + g)(x , y) = exy +
√

1− x2 − y2,

(fg)(x , y) = exy
√

1− x2 − y2,
f
g (x , y) = exy√

1−x2−y2
. Beware, here we have to exclude from the

domain all points where g equals zero.

Composition of functions: Let f : M 7→ Rn (this means that there are n
functions fi : M 7→ R, i ∈ {1, . . . , n}) and g : Rn 7→ R. Then a
composition is a function h = g ◦ f defined as

h(x , y) = g(f1(x , y), f2(x , y)).

Similarly, if f : M 7→ R and g : R 7→ R then h = g ◦ f is defined as
h(x , y) = g(f (x , y))
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Functions of multiple variables Basic notions

Definition

Let M ⊂ Rn and f : M → R. Next, let ϕ : I → M is a curve (I ⊂ R is an
interval). Then f ◦ ϕ is a cross-section of f .

Example

What is the graph of a function

f (x , y) = (x + y)2

on a line pa : (x , y) = (a, 0) + t(1, 1), t ∈ R for some a ∈ R? And
how about lines qb : (x , y) = (a, 0) + t(1,−1), t ∈ R for some
b ∈ R ?.

Draw a graph of a cross-section

f (x , y) =
1

x2 + y2

along lines
(x , y) = t(cosα, sinα), t ∈ (0,∞)

where α ∈ [0, 2π) is a parameter.
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Functions of multiple variables Few words about topology

Topology

Definition

An open ball centered at (x0) ∈ Rn with radius r ∈ (0,∞) is a set

Br (x0) = {x ∈ R2, ‖x − x0‖ < r}.

r

x0
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Functions of multiple variables Few words about topology

Definition

A set M ⊂ R2 is open if for every (x0, y0) ∈M there is r > 0 such that
Br (x0, y0) ⊂ M.
A set M is called closed if R2 \M is open.

Example

A set M := (0, 1)× (0, 1) is open. Indeed, let (a, b) ∈ M. Define
δ = min{a, b, 1− a, 1− b}. Since a ∈ (0, 1) and b ∈ (0, 1) we have
δ > 0. Necessarily, Bδ/2(a, b) ⊂ M.

On the other hand, a set M := [0, 1]× (0, 1) is not open. Consider
for example a point (1, 1/2) ∈ M. Then every ball Br (1, 1/2)
contains a point (1 + r/2, 1/2) which is outside of M. Note that M
is not closed. Why?
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Functions of multiple variables Few words about topology

Few notes about open sets

∅ and Rn are open sets (and closed sets as well),

a union of open sets is an open set,

an intersection of two open sets is an open set.

Let consider a set

M := {(x , y), x ∈ (−1, 1), y < x2}.

Is this set open?
Observation

Let f : R2 7→ R be a continuous function. Then f −1(A) is an open set
for every A ⊂ R open.

Question What is a continuous function? We will see later.
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Václav Mácha (UCT) Functions 10 / 48



Functions of multiple variables Few words about topology

Few notes about open sets

∅ and Rn are open sets (and closed sets as well),

a union of open sets is an open set,

an intersection of two open sets is an open set.

Let consider a set

M := {(x , y), x ∈ (−1, 1), y < x2}.

Is this set open?
Observation

Let f : R2 7→ R be a continuous function. Then f −1(A) is an open set
for every A ⊂ R open.

Question What is a continuous function? We will see later.
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Functions of multiple variables Few words about topology

For now: A projection p : R2 7→ R, p(x , y) = x is a continuous function
(as well as projection q(x , y) = y). A sum, difference and product of two
continuous functions are continuous functions. A quotient of two
continuous function is again a continuous function. A composition of two
continuous function is a continuous function.

Thus, f (x , y) = |x | is a continuous function. Indeed, f (x , y) = |p(x , y)|
is a composition of p and | · |. Thus,
f −1((−∞, 1)) = {(x , y) ∈ R2, x ∈ (−1, 1)} is an open set.
Next, g(x , y) = y − x2 is a continuous function. Indeed,
g(x , y) = q(x , y)− p(x , y)2. Consequently,
f −1((−∞, 0)) = {(x , y) ∈ R2, y − x2 < 0} = {(x , y) ∈ R2, y < x2}.
Since M = f −1((−∞, 1)) ∩ g−1((−∞, 0)), we deduce that M is open.
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Functions of multiple variables Few words about topology

Definition

An interior of set M ⊂ Rn is a set M0 of all points x0 for which there is
r > 0 such that Br (x0) ⊂ M. Equivalently, it is the biggest open set
contained in M.
A closure of a set M ⊂ Rn is a set M defined as M := R2 \ (R2 \M)0.
Equivalently, it is the smallest closed set containing M.
A boundary of a set M is denoted by ∂M and it is defined as M \M0.

Example

Take M = [0, 1]× (0, 1) and find M0, M and ∂M.
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Functions of multiple variables Few words about topology

Definition

Let M ⊂ Rn. A point x0 ∈ R2 is a limit point of M if Br (x0) ∩M 6= ∅ for
every r > 0.
A point (x0) ∈ M is an isolated point of M if there is r > 0 such that
Br (x0) ∩M = {(x0)}.

Example

As an example, consider a set
M := {(x , y) ∈ R, y = 0, x = 1/n, n ∈ N}. We claim, that (0, 0) is
a limit point of M. Indeed, let r > 0. Then there is nr such that
nr > 1/r and, clearly, (1/nr , 0) ∈ M is such point that
‖(1/nr , 0)− (0, 0)‖ < r and thus Br (0, 0) ∩M = (1/nr , 0).

Václav Mácha (UCT) Functions 13 / 48



Functions of multiple variables Few words about topology

Definition

Let M ⊂ Rn. A point x0 ∈ R2 is a limit point of M if Br (x0) ∩M 6= ∅ for
every r > 0.
A point (x0) ∈ M is an isolated point of M if there is r > 0 such that
Br (x0) ∩M = {(x0)}.

Example

As an example, consider a set
M := {(x , y) ∈ R, y = 0, x = 1/n, n ∈ N}. We claim, that (0, 0) is
a limit point of M. Indeed, let r > 0. Then there is nr such that
nr > 1/r and, clearly, (1/nr , 0) ∈ M is such point that
‖(1/nr , 0)− (0, 0)‖ < r and thus Br (0, 0) ∩M = (1/nr , 0).
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Functions of multiple variables Continuity and limits

Definition

We say that f : M ⊂ Rn 7→ R is continuous at a point x0 ∈ M if

∀ε > 0, ∃δ > 0, ∀x ∈ (M ∩ Bδ(x0)) , |f (x)− f (x0)| < ε.

Let N ⊂ M and let f : M 7→ R be continuous at all points (x0) ∈ N.
Then we say that f is continuous on N. If f is continuous on Dom f
then we simply say that f is continuous.
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Functions of multiple variables Continuity and limits

Properties of continuous functions
Let f1 and f2 be continuous functions. Then

f1 + f2, f1 − f2 and f1f2

are continuous function. Moreover, f1
f2

whenever it is defined.
Further, f1 ◦ f2 is also a continuous function whenever it is correctly
defined.

Let remind that f (x , y) = x and f (x , y) = y are continuous function.

Example

Where is

f (x , y) =
x +
√
x + y

1 + cos2 x

continuous?
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Functions of multiple variables Continuity and limits

Definition Let (x0, y0) be a limit point of M ⊂ R2 and let f : M 7→ R.
We say that a limit of f at the point (x0, y0) is A ∈ R if

∀ε > 0, ∃δ > 0, ∀(x , y) ∈ (M ∩ Bδ(x0, y0)), |f (x , y)− A| < ε.

We write lim(x ,y)→(x0,y0) f (x , y) = A.

We say that a limit of f at the point (x0, y0) is ∞ if

∀M > 0, ∃δ > 0, ∀(x , y) ∈ (M ∩ Bδ(x0, y0)), f (x , y) > M.

We write lim(x ,y)→(x0,y0) f (x , y) =∞. We say that a limit of f at the
point (x0, y0) is −∞ if lim(x ,y)→(x0,y0)−f (x , y) = −∞.
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Functions of multiple variables Continuity and limits

Observation (Arithmetic of limits)

Let f and g be two functions and let (x0, y0) be a limit point of Dom f
and of Dom g . Then

lim
(x ,y)→(x0,y0)

(f + g)(x , y) = lim
(x ,y)→(x0,y0)

f (x , y) + lim
(x ,y)→(x0,y0)

g(x , y)

lim
(x ,y)→(x0,y0)

fg(x , y) = lim
(x ,y)→(x0,y0)

f (x , y) lim
(x ,y)→(x0,y0)

g(x , y)

lim
(x ,y)→(x0,y0)

f

g
(x , y) =

lim(x ,y)→(x0,y0) f (x , y)

lim(x ,y)→(x0,y0) g(x , y)
.

assuming the right hand side is well defined.

Observation

A function f is continuous at point (x0, y0) ∈ Dom f if and only if
lim(x ,y)→(x0,y0) f (x , y) = f (x0, y0).
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Functions of multiple variables Continuity and limits

Example Consider a function

f (x , y) =
x2y2

x2y2 + (x − y)2
.

This function is not defined at (0, 0). It is possible to define the value
f (0, 0) in such a way that f is continuous? In particular, does there exist
a finite limit

lim
(x ,y)→(0,0)

f (x , y)?
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Functions of multiple variables Continuity and limits

Sandwich lemma
Let f , g , h be three functions
defined on Bδ(x0, y0) \ {(x0, y0)}
for some δ > 0. Assume that for all
(x , y) 6= (x0, y0) in Bδ(x0, y0) we
have

g(x , y) ≤ f (x , y) ≤ h(x , y).

If there is A ∈ R∗ such that

lim
(x ,y)→(x0,y0)

g(x , y)

= lim
(x ,y)→(x0,y0)

h(x , y) = A

then also

lim
(x ,y)→(x0,y0)

f (x , y) = A.

Figure: Sandwich lemma
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Functions of multiple variables Continuity and limits

Examples

lim(x ,y)→(0,0)
xy√
x2+y2

limx→0

(
limy→0

x−2y
3x+y

)
limy→0

(
limx→0

x−2y
3x+y

)
lim(x ,y)→(0,0)

x3y
x4+y4

lim(x ,y)→(0,0)
x2y

x2+y2
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Functions of multiple variables Derivatives

Derivatives

Definition

Let f : M ⊂ Rn → R and v ∈ Rn be such that ‖v‖ = 1. Let x0 ∈ M0.
The derivative of f with respect to direction v in a point x0 is

Df (x0, v) = g ′(t)|t=0 where g(t) = f (x0 + tv)

The direction of an arbitrary vector v is a unit vector v
‖v‖ .

Examples

What is the direction of a line p : (x , y) = (2,−1) + t(1, 3)?

Let f (x , y) = x2ey . Compute Df
(

(1, 0),
(

1√
2
, 1√

2

))
.
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Functions of multiple variables Derivatives

Partial derivatives

Definition

Let f : M ⊂ Rn → R and let x = (x1, x2, . . . , xn) ∈ M0. Let ei be a
vector in direction of the axis xi .

∂

∂xi
f (x) = Df ((x1, x2, . . . , xn), ei ),

is called a partial derivative with respect to xi in point x .

Example

Let f (x , y) = x(sin y)
1+x2 . Compute ∂

∂x f ((1, 1)) and ∂
∂y f ((1, 1)).

Compute ∂
∂x f (x , y) and ∂

∂y f (x , y) for the function from the previous
exercise.

Remark: the gradient of f is a vector of its partial derivative. Namely

∇f =

(
∂

∂x1
f ,

∂

∂x2
f , . . . ,

∂

∂xn
f

)
.
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Functions of multiple variables Derivatives

Definition

We define the second order derivatives as follows

∂2f

∂x2
i

=
∂

∂xi

(
∂f

∂xi

)
,

∂2f

∂xi∂xj
=

∂

∂xi

(
∂f

∂xj

)
whenever i , j ∈ {1, . . . , n}, i 6= j . Analogously, we define the third and
higher order derivatives

Example

Compute all second order derivatives of

f (x , y) =
x

y
− exy .

Let f ∈ C 2, then
∂2f

∂xi∂xj
=

∂2f

∂xj∂xi
.

In particular, ∇2f is a symmetric n by n matrix.
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Functions of multiple variables Derivatives

Theorem (Chain rule)

Let n, m ∈ N, let f : Rn → Rm and g : Rm → R. Then

∂(g ◦ f )

∂xi
=

m∑
j=1

∂g

∂yj

∂fj
∂xi

for every i ∈ {1, . . . , n}.

Example

Let f (x) = g(sin x , cos x) (we use notation g = g(a, b)). Then

∂f

∂x
=
∂g

∂a
cos x − ∂g

∂b
sin x .

Calculate ∂f
∂t where

1 f (x , y) = 4x2 + 3y2, x = x(t) = sin t and y = y(t) = cos t,

2 f (x , y) =
√

x2 − y2, x = x(t) = e2t and y = y(t) = e−t .
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Functions of multiple variables Derivatives

Differential
Consider a function f : R2 7→ R. We try to compute an increment of a
function if we move from the point (x0, y0) to the point (x0 + h, y0 + k),
i.e., ∆f (x0, y0) = f (x0 + h, y0 + k)− f (x0, y0). It can be written as

∆f (x0, y0) = f (x0 + h, y0 + k)− f (x0 + h, y0) + f (x0 + h, y0)− f (x0, y0).

Assuming |h| and |k | are sufficiently small we can us an approximation

f (x0 + h, y0 + k)− f (x0 + h, y0) ∼ ∂f

∂x
(x0 + h, y0)k

f (x0 + h, y0)− f (x0, y0) ∼ ∂f

∂y
(x0, y0)h

Moreover, ∂f
∂x (x0 + h, y0) ∼ ∂f

∂x (x0, y0) if f ∈ C 1. This yields

f (x0 + h, y0 + k)− f (x0, y0) ∼ ∂f

∂x
(x0, y0)h +

∂f

∂y
(x0, y0)k .
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Functions of multiple variables Derivatives

We denote by dx the change in the x coordinate and dy the change in
the y coordinate.

Definition

Let f : M ⊂ R2 → R be such that f has continuous first partial
derivatives. Then

df (x0, y0) =
∂f

∂x
(x0, y0)dx +

∂f

∂y
(x0, y0)dy

is called the differential of f at the point (x0, y0).

Example

Determine an approximate value of
√

(0.03)2 + (2.89)2 by use of
the differential.

It is worth to mention that df (x0, y0) = ∇f (x0, y0) · (dx ,dy). In multiple
dimension,

df (x0) = ∇f (x0) · (dx1, . . . ,dxn).
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Václav Mácha (UCT) Functions 26 / 48



Functions of multiple variables Derivatives

We denote by dx the change in the x coordinate and dy the change in
the y coordinate.

Definition

Let f : M ⊂ R2 → R be such that f has continuous first partial
derivatives. Then

df (x0, y0) =
∂f

∂x
(x0, y0)dx +

∂f

∂y
(x0, y0)dy

is called the differential of f at the point (x0, y0).

Example

Determine an approximate value of
√

(0.03)2 + (2.89)2 by use of
the differential.

It is worth to mention that df (x0, y0) = ∇f (x0, y0) · (dx , dy). In multiple
dimension,

df (x0) = ∇f (x0) · (dx1, . . . ,dxn).
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Functions of multiple variables Derivatives

Definition

Let f : Rn 7→ R have continuous partial derivatives at point x0 ∈ Rn.
Then a tangent plane of the graph of f at point x0 is a plane with
equation

z = f (x0) +∇f (x0) · (x − x0)

Example

Compute a tangent plane of the graph of f at point (1, 2) for
f (x , y) =

√
9− x2 − y2.
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Functions of multiple variables Derivatives

Definition

We define the second order Taylor polynomial at a point x0 ∈ Rn as

T2(x) = f (x0) +∇f (x0) · (x − x0) +
1

2
(x − x0)∇2f (x − x0)T

Example

Find an approximate value of√
(0.03)2 + (2.89)2

by use of the second order Taylor polynomial
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Functions of multiple variables Implicitly given functions

Implicitly given function
First, consider a set

{(x , y) ∈ R2, x2 + y2 = 1}

x

y

The equation x2 + y2 = 1 define two function y1(x) and y2(x) where

y1(x) =
√

1− x2, Dom y1(x) = [−1, 1],

y2(x) = −
√

1− x2, Dom y2(x) = [−1, 1].
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Functions of multiple variables Implicitly given functions

What if it is impossible to express y? Consider an equation

f (x , y) = 0.

What assumptions should be imposed in order to get uniquely defined
function y(x)?

Theorem

Let f : R2 7→ R and (x0, y0) ∈ R2 be given. If

i f ∈ C k for some k ∈ N,

ii f (x0, y0) = 0,

iii
∂f
∂y (x0, y0) 6= 0,

Then there is a uniquely determined function y(x) of class C k on a
neighborhood of point x0 such that f (x , y(x)) = 0 (precisely, there is
ε > 0 and a function y(x) defined on (x0 − ε, x0 + ε) such that
f (x , y(x)) = 0.
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Functions of multiple variables Implicitly given functions

Example Consider an equation

x3 + y3 − 3xy − 3 = 0.

Is there a function y(x) determined by the given equation on the
neighborhood of a point (1, 2)?
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Functions of multiple variables Implicitly given functions

Note that the last assumption in the implicit function theorem cannot be
omited. Consider the first equation

x2 + y2 = 1

and let decide whether there is a function y(x) given by that equation at
the point (1, 0). According to the picture, it is impossible (recall the
vertical line test). The theorem may not be applied. Take
f (x , y) = x2 + y2 − 1. We have

∂f

∂y
= 2y ,

∂f

∂y
(1, 0) = 0

and the third assumption is not fulfilled.
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Functions of multiple variables Implicitly given functions

Or another example, consider a set

{(x , y) ∈ R2, x2 − y2 = 0}.

Is this set a graph of some function around a point (0, 0)?

x

y
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Functions of multiple variables Implicitly given functions

Further analysis of the implicitly given function
In order to examine further qualitative properties of the given function we
have to compute derivatives at the given points. The easiest method is
to differentiate the given equation with respect to x (and to assume that
y is in fact a function of x).
Example

Consider an equation

e2x + ey + x + 2y − 2 = 0.

Does this equation define a function y(x) on a neighborhood of (0, 0). If
yes, compute y ′(0) and y ′′(0).
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Functions of multiple variables Implicitly given functions

Some relations
What is the relation for y ′(x0)? And what is the relation for y ′′(x0)?

y ′(x0) = −
∂f
∂x (x0, y0)
∂f
∂y (x0, y0)

.

Example

Show that there is a function y(x) given by an equation
y − 1

2 sin y = x on a neighborhood of (π, π). Find the tangent line
to y(x) at the point x0 = π.
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Functions of multiple variables Extremes – the local ones

Extremes, local extremes

Definition

Let f : M ⊂ Rn 7→ R. We say that f attains a local maximum at a point
x0 ∈ M0 if there is r > 0 such that f (x0) ≥ f (x) for all (x) ∈ Br (x0).
We say that f attains a local minimum at a point x0 ∈ M0 if there is
r > 0 such that f (x0) ≤ f (x) for all (x) ∈ Br (x0).

How to examine the extremes? Recall the Taylor polynomial of the
second order

T2(x0)(f )(x) = f (x0) +∇f (x0) · (x − x0) +
1

2
(x − x0)(∇2f (x0))(x − x0)T .
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Functions of multiple variables Extremes – the local ones

Lemma

Let f ∈ C 1 have a local extreme at x0. Then ∇f (x0) = 0.

Definition

A point (x0) ∈ M such that ∇f (x0) = 0 is called a stationary point.

Lemma

Let f ∈ C 2 and let x0 be its stationary point. Then

if ∇2f (x0) is positive-definite, then f has a local minimum at x0,

if ∇2f (x0) is negative-definite, then f has a local maximum at x0,

if ∇2f (x0) is indefinite, then there is no extreme at x0,

otherwise, we do not know anything.
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Functions of multiple variables Extremes – the local ones

Example

Examine local extremes of

f (x , y) = x3 + 3xy2 − 15x − 12y .
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Functions of multiple variables Extremes subject to a constraint

Global extremes with respect to a set

Lemma

Let M ⊂ Rn and let f : M → R. Then f attains its minimum on M at
point (x0, y0) ∈M if

∀(x , y) ∈ M, f (x0, y0) ≤ f (x , y).

Similarly, f attains its maximum on M at point (x0, y0) ∈M if

∀(x , y) ∈ M, f (x0, y0) ≥ f (x , y).

Lemma

Let M ⊂ Rn be a bounded and closed set and let f : M → R be a
continuous function. Then f attains its minimum and maximum on M.
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Functions of multiple variables Extremes subject to a constraint

Example

Find the maximum and minimum of

f (x , y) = (x2 + y)ey

on a set

M = {(x , y) ∈ R2, y ≥ 1

3
x , y ≤ 3x , y ≤ 5− x}.

Give two examples of functions (and sets M) which do not attain
their extremes.
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Functions of multiple variables Extremes subject to a constraint

Reminder: Exercises

Find all local maxima and minima of

f (x , y) = 3y3 − x2y2 + 8y2 + 4x2 − 20y .

Find the points where the function

f (x , y) = x2 + y2 − xy − x − 2

considered on a rectangle

M = {(x , y) ∈ R2, 0 ≤ x ≤ 2, 0 ≤ y ≤ 1}

attains its maximum and minimum.

Find the maximum and minimum values of

f (x , y) = 81x2 + y2

subject to the constraint 4x2 + y2 ≤ 9.
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Functions of multiple variables Extremes subject to a constraint

Theorem (The Lagrange multipliers)

Let f : Dom f ⊂ Rn → Rn be a C 1 function defined on a neighborhood
of

M = {x ∈ Rn, g(x) = 0}

where g is a C 1 function. If there is an extreme of f with respect to the
set M then there exists λ ∈ R such that

∇f + λ∇g = 0.
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Functions of multiple variables Extremes subject to a constraint

Exercises

Find the maximum and minimum values of

f (x , y , z) = y2 − 10z

subject to the constraint

x2 + y2 + z2 = 36.

Find extremes of

f (x , y) = x2 + y2 − 12x − 16y

on
M = {(x , y) ∈ R2, x2 + y2 ≤ 25, x ≥ 0}.
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Functions of multiple variables Extremes subject to a constraint

Theorem (The Lagrange multipliers - two constraints)

Let n ≥ 3, f : Dom f ⊂ Rn → Rn be a C 1 function defined on a
neighborhood of

M = {x ∈ Rn, g(x) = 0, h(x) = 0}

where g , h : Rn → R are C 1 functions. If there is an extreme of f with
respect to the set M then there exists λ, µ ∈ R such that

∇f + λ∇g + µ∇h = 0.

Example

Find the maximum and minimum values of

f (x , y , z) = 3x2 + y

subject to the constraints

4x − 3y = 9 and x2 + z2 = 9.
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Functions of multiple variables applications

Applications to economics

Suppose you are running a factory producing some sort of widget
that requires steel as a raw material. Your costs are predominantly
human labor, which is $20 per hour for your worker, and the steel
itself, which runs for $170 per ton. Suppose your revenue R is
loosely modeled by the following equation

R(h, s) = 200h2/3s1/3

where h represents hours of labor and s represents tons of steel. If
your budget is $20 000, what is the maximum possible revenue?
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Functions of multiple variables applications

The bottom of a rectangular box costs twice as much per unit area
as the sides and top. Find the shape for a given volume that will
minimize the cost.
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Functions of multiple variables applications

A manufacturer makes two models of an item, standard and deluxe.
It costs $40 to manufacture the standard model and $60 for the
deluxe. A market research firm estimates that if the standard model
is priced at x dolars and the deluxe at y dollars, then the
manufacturer will sell 500(y − x) of the standard items and
45 000 + 500(x − 2y) of the deluxe each year. How should the items
be priced to maximize the profit?
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Functions of multiple variables applications

Assume that the cost of a car (of one given type) depends linearly
on its age, i.e.,

y = ax + b, a, b ∈ R,

where y is the price of a car and x is its age. Determine the
dependence from the following data using the least square method.

x 2 3 3 3 4 4 5 5 6

y 28.7 24.8 26.0 30.5 23.8 24.6 23.8 20.4 22.1
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