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Vectors, vector spaces

Definition

A vector space (over a field R)

is a set V with two operations:

sum, i.e. ∀v1, v2 ∈ V , v1 + v2 ∈ V ,

multiplication by real number, i.e. ∀α ∈ R, ∀v ∈ V , αv ∈ V .

We assume that the set V is closed with respect to both operations (i.e.,
all possible results belong to V ). Moreover,

the summation is associative, commutative, there is 0 ∈ V and for
all v ∈ V there is −v ,

the multiplication satisfies α(βv1) = (αβ)v1,
α(v1 + v2) = αv1 + αv2, (α + β)v1 = αv1 + βv1, 1v1 = v1 for all
α, β ∈ R and v1, v2 ∈ V .

Elements of V are called vectors.
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Vectors, vector spaces

Examples:

- the space of ordered pairs of real numbers (u, v) ∈ R2 with summation
and product defined as

(u1, v1) + (u2, v2) = (u1 + u2, v1 + v2), α(u1, v1) = (αu1, αv1)

for all (u1, v1), (u2, v2) ∈ R2, α ∈ R.
- the space of all (x , y) ∈ R2 satisfying the equation

x + 2y = 0. (1)

also forms a vector space with summation and product defined as above.
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Vectors, vector spaces

- on the other hand, the space of all (x , y) ∈ R2 satisfying

x + 2y = 1

do not form a vector space.

- The set of all polynomials (with usually defined summation and
product) is a vector space.
- The set of second degree polynomials is not a vector space.
- The set of polynomials of degree 0, 1 and two form a vector space.

Václav Mácha (UCT) Linear Algebra 5 / 63



Vectors, vector spaces

- on the other hand, the space of all (x , y) ∈ R2 satisfying

x + 2y = 1

do not form a vector space.
- The set of all polynomials (with usually defined summation and
product) is a vector space.

- The set of second degree polynomials is not a vector space.
- The set of polynomials of degree 0, 1 and two form a vector space.
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Vectors, vector spaces

Definition

Let S ⊂ V be such that for all s1, s2 ∈ S and α ∈ R it holds that
s1 + s2 ∈ S and αs1 ∈ S . Then S itself is a vector space and we say that
S is a subspace of V . If S is nonempty and S 6= V then we say S is a
proper subspace.

Examples:

a subset S = {(x , y , 0) ∈ R3} of V = {(x , y , z) ∈ R3}.
(from the previous slide) all (x , y) ∈ R2 solving x + 2y = 0.
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Vectors, vector spaces

Definition

Let u, v ∈ V . A linear combination is any vector of the form αu + βv
where α, β ∈ R are arbitrary.

Generally, let {ui}ni=1 ⊂ V be n vectors
from V . Their linear combination is any vector of the form

n∑
i=1

αiui , αi ∈ R ∀i ∈ N.

Examples (and an exercise):

(2, 5, 3) is a linear combination of (1, 1, 0) and (0, 1, 1) because

(2, 5, 3) = 2(1, 1, 0) + 3(0, 1, 1).

(0, 2,−1) is not a linear combination of (1, 1, 0) and (0, 1, 1).

Is (1, 1, 0, 5) a linear combination of (1,−1, 0, 0), (2, 0, 2, 1) and
(0,−1, 0, 2)?
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Vectors, vector spaces

Definition

The set of all linear combinations of v1, v2, . . . , vn is called a linear span
of a set {v1, v2, . . . , vn}. We denote it by span{v1, v2, . . . , vn}.

Mathematically speaking:

span{v1, v2, . . . , vn} =

{
n∑

i=1

αivi , αi ∈ R ∀i ∈ {1, . . . , n}

}
.

Lemma

Linear span is a vector space

Example:

The set {(x , y , z) ∈ R3, 2x + y − z = 0} contains a span of
v1 = (1,−2, 0) and v2 = (0, 1, 1) (or, for example, w1 = (1, 0, 2) and
w2 = (1, 1, 3)).
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Vectors, vector spaces

Definition

Vectors v1, v2, . . . , vn are said to be linearly dependent if the equation

α1v1 + α2v2 + . . .+ αnvn = 0

has a nontrivial solution (i.e. a solution α1, α2, . . . , αn where at least one
coefficient is nonzero).

Vectors v1, v2, . . . , vn are said to be linearly independent if the equation

α1v1 + α2v2 + . . .+ αnvn = 0

has only solution α1 = α2 = . . . = αn = 0.

Examples:

Vectors (1, 0), (0, 1) and (−2, 3) are linearly dependent.

Vectors (1, 1, 0), (2, 2, 0) and (−1, 0, 1) are linearly dependent.

Vectors (2, 3, 1, 0), (1, 0,−1, 0) and (0, 1, 0,−1) are linearly
independent.
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Vectors, vector spaces

Lemma

Let v1, v2, . . . , vn be linearly dependent. Then one of the vectors is a
linear combination of the remaining vectors. Precisely, there is
i ∈ {1, . . . , n} such that vi ∈ span {{v1, v2, . . . , vn} \ {vi}}.

Proof.

According to assumption, there is i ∈ {1, . . . , n} such that

α1v1 + α2v2 + . . .+ αnvn = 0

has a solution with αi 6= 0. Assume, without lost of generality, that
i = 1. We may rearrange the equation to a form

v1 = −α2

α1
v2 −

α3

α1
v3 − . . .−

αn

α1
vn.
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Vectors, vector spaces

Lemma

Let v1 ∈ span{v2, . . . , vn}. Then

span{v2, . . . , vn} = span{v1, v2, . . . , vn}.

Proof.

Clearly, span{v2, . . . , vn} ⊂ span{v1, v2, . . . , vn}. Next, let

v =
n∑

i=1

αivi .

Since v1 =
∑n

i=2 βivi for some βi ∈ R, we get

v =
n∑

i=2

(αi + α1βi )vi

and v ∈ span{v2, . . . , vn}.
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Vectors, vector spaces

Definition

Let V = span{v1, v2, . . . , vn}. Then we say that {v1, v2, . . . , vn}
generates V . The vectors {v1, v2, . . . , vn} are called generators of V .

Definition

Let {v1, . . . , vn} be a set of linearly independent vectors that generates
V . Then {v1, . . . , vn} is a basis of V .

Lemma

Every two bases of a vector space V have the same number of elements.

Definition

We say, that V is of dimension n ∈ N iff every basis has n elements.
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Vectors, vector spaces

Examples:

The set {(1, 0), (0, 1)} ⊂ R2 generates R2. Moreover, these vectors
are linearly independent. Consequently, the dimension of R2 is 2.

Vectors {1, x , x2} generates the space of polynomials of degree at
most 2 and they are linearly independent.
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Vectors, vector spaces

Let {vi , i = 1, . . . , n} be a set of independent vectors. Then it forms
basis of span{vi , i = 1, . . . , n} and the dimension of that linear span is n.

Definition

Let {vi , i = 1, . . . , n} be independent vectors and let
v ∈ span{vi , i = 1, . . . , n}. Then the numbers αi , i = 1, . . . , n satisfying
v =

∑n
i=1 αivi are determined uniquely and they are called coordinates

of v with respect to the given basis.

Examples

Find the coordinates of u = (0, 1) with respect to a basis {v ,w}
where v = (3, 2), and w = (4, 3).

Find the coordinates of x = (−1, 0, 2) with respect to a basis
(u, v ,w) where u = (2, 1, 1), v = (1,−1, 1), and w = (1, 1, 1)
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Matrices Intro

Matrices, introduction

Definition

A matrix is a table of numbers arranged in rows and columns. Namely,
let m, n be natural numbers. Then

A =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

 = (aij)
m,n
i=1,j=1

The matrix A has m−rows and n−columns. The matrix A is said to be
of type (m, n).

For example matrix (
2 3 0
−1 2 −1

)
has two rows and three columns and it is of type (2, 3) (or it is of type
two by three).
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Matrices Intro

Operations with matrices
summation: Let A = (aij)

m,n
i=1,j=1 and B = (bij)

m,n
i=1,j=1 be two matrices

of the same type. Then we define

A + B = (aij + bij)
m,n
i=1,j=1.

Example:(
1 −1 2 0
0 0 1 −2

)
+

(
2 2 2 −5
1 1 −3 4

)
=

(
3 1 4 −5
1 1 −2 2

)
.

!!! Matrices of different types cannot be summed !!!
multiplication by real number: Let α ∈ R. Then αA = (αaij)

m,n
i=1,j=1.

Example:

3

 1 1
2

2 2
−3 1

 =

 3 3
2

6 6
−9 3


Matrices of given type (m, n) forms a vector space.
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−9 3


Matrices of given type (m, n) forms a vector space.
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Václav Mácha (UCT) Linear Algebra 16 / 63



Matrices Intro

Operations with matrices
summation: Let A = (aij)

m,n
i=1,j=1 and B = (bij)

m,n
i=1,j=1 be two matrices

of the same type. Then we define

A + B = (aij + bij)
m,n
i=1,j=1.

Example:(
1 −1 2 0
0 0 1 −2

)
+

(
2 2 2 −5
1 1 −3 4

)
=

(
3 1 4 −5
1 1 −2 2

)
.

!!! Matrices of different types cannot be summed !!!
multiplication by real number: Let α ∈ R. Then αA = (αaij)

m,n
i=1,j=1.

Example:

3

 1 1
2

2 2
−3 1

 =

 3 3
2

6 6
−9 3



Matrices of given type (m, n) forms a vector space.
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Matrices Intro

transposition: For a matrix A = (aij)
m,n
i=1,j=1 we define a transpose

matrix AT as
AT = (aji )

n,m
j=1,i=1

Examples:

(
1 1 3
2 −1 1

)T

=

1 2
1 −1
3 1

 ,
(
3 −1 −1 0

)T
=


3
−1
−1
0


Another example (

1 0
0 1

)T

=

(
1 0
0 1

)
Definition

If A = AT , A is called a symmetric matrix.
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Matrices Intro

Matrix multiplication
Let A be of type (m, n) and B be of type (n, p). Then C := AB of type
(m, p) is defined as

C = (cij)
m,p
i=1,j=1

where

cij =
n∑

k=1

aikbkj .

Example: (
−1 1 0
2 0 1

) 2 −1
−1 −1
0 1

 =

(
−3 0
4 −1

)
.

Warning:
AB 6= BA
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Václav Mácha (UCT) Linear Algebra 18 / 63



Matrices Intro

Example: A vendor sells hot dogs and corn dogs at three different
locations. His total sales(in hundreds) for January and February from the
three locations are given in the table below.

January h.d January c.d. February h.d. February c.d.
place 1 10 8 8 7
place 2 8 6 6 7
place 3 6 4 6 5

Represent this tables as 3 times 2 matrices J and F .

Determine the total sales for the two months, that is J + F .

If hot dogs sell for 3 dollars and corn dogs for 2 dollars, find the
revenue from the sale of hot dogs and corn dogs.
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Matrices Intro

Definition

A rank of matrix A is a dimension of vector space generated by its rows.
It is denoted by rankA.

Lemma

It holds that rankA = rankAT .

Examples

Determine a rank of (
1 −1 1 0
0 2 2 2

)
Determine a rank of  1 8 1

1 2 0
−2 2 1
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Matrices Gauss elimination method

Systems of equations
We are going to deal with system of m linear equations with n unknowns
x1, x2, . . . , xn.

a11x1 + a12x2 + . . .+ a1nxn = b1

a21x1 + a22x2 + . . .+ a2nxn = b2

... =
...

am1x1 + am2x2 + . . .+ amnxn = bm

We use notation x = (x1, x2, . . . , xn), b = (b1, b2, . . . , bn) and
A = (aij)

mn
i=1,j=1. Then the above system may be rewritten as

AxT = bT .
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Matrices Gauss elimination method

Definition

An elementary transformation is

scaling the entire row with a nonzero real number or

interchanging the rows within a matrix or

adding α−multiple of one row to another (here α ∈ R).

Let A arise from B by one or more elementary transformations. Then we
write A ∼ B.

For example(
2 1
−1 2

)
∼
(
−1 2
2 1

)
∼
(
−2 4
2 1

)
∼
(
−2 4
6 −7

)
.
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Matrices Gauss elimination method

Definition

A leading coefficient of a row is the first non-zero coefficient in that
row. We say that matrix A is in echelon form if the leading coefficient
(also called a pivot) of a nonzero row is always strictly to the right of the
leading coefficient of the row above it.

Examples: Consider following matrices

A =


−1 −1 3 0
0 0 2 1
0 0 0 −1
0 0 0 0

 B =


−1 −1 3 0
0 2 2 1
1 0 −1 −1
0 0 0 3


The matrix A is in echelon form whereas the matrix B is not in echelon
form.

Lemma

Let A be in echelon form. Then its rank is equal to the number of
non-zero rows.

Václav Mácha (UCT) Linear Algebra 23 / 63



Matrices Gauss elimination method

Definition

A leading coefficient of a row is the first non-zero coefficient in that
row. We say that matrix A is in echelon form if the leading coefficient
(also called a pivot) of a nonzero row is always strictly to the right of the
leading coefficient of the row above it.

Examples: Consider following matrices

A =


−1 −1 3 0
0 0 2 1
0 0 0 −1
0 0 0 0

 B =


−1 −1 3 0
0 2 2 1
1 0 −1 −1
0 0 0 3


The matrix A is in echelon form whereas the matrix B is not in echelon
form.

Lemma

Let A be in echelon form. Then its rank is equal to the number of
non-zero rows.
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Matrices Gauss elimination method

Lemma

Let A ∼ B. Then rank(A) = rank(B).

Examples:

The rank of

A =

2 −1 1 3
3 2 2 1
1 3 1 −2

 .

is 2

Vectors (1, 0, 1), (0, 1, 0), (−1, 0,−1), (1, 1, 2) are linearly
dependent.

Vectors (1, 2, 2,−1), (3, 1, 0, 1) and (−1, 3, 4,−3) are linearly
dependent.

Vectors (2, 1, 1), (1, 1, 0) and (0, 1, 0) are linearly independent.
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Matrices Systems of equations

The system of equations will be represented by an augmented matrix –
i.e. a matrix A = (ai ,j)

mn
i=1,j=1 with extra column of the right hand side.

For example, a system of equations

2x + 5y = 10

3x + 4y = 24

is represented by an augmented matrix(
2 5 | 10
3 4 | 24

)
.

Such matrix consists of two parts – matrix A =

(
2 5
3 4

)
and a vector of

right hand side b = (3, 4). Then the augmented matrix can be written as(
A|bT

)
.
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Matrices Systems of equations

Let solve the system from the previous slide by Gauss elimination:(
2 5 | 10
3 4 | 24

)
∼
(

6 15 | 30
3 4 | 24

)
∼
(

6 15 | 30
6 8 | 48

)
∼
(

6 15 | 30
0 −7 | 18

)

The last row of the last matrix represent an equation

−7y = 18 ⇒ y = −18

7
.

The first row of the last matrix represent

6x + 15y = 30

and once we plug there y = −18
7 we deduce

x =
80

7
.
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Matrices Systems of equations

Theorem (Frobenius)

A system of linear equations has a solution if and only if
rankA = rank(A|bT ).

Exercise: Solve

−x + y + z = 0

2y + x + z = 1

2z + 3y = 2.

We have−1 1 1 | 0
1 2 1 | 1
0 3 2 | 2

 ∼
−1 1 1 | 0

0 3 2 | 1
0 3 2 | 2

 ∼
−1 1 1 | 0

0 3 2 | 1
0 0 0 | 1


and, according to the Frobenius theorem, there is no solution to the
given system.
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Matrices Systems of equations

Non-unique solutions
Solve

2x + y − z = 3

x − 2y + 3z = −1

Gauss elimination:(
2 1 −1 | 3
1 −2 3 | −1

)
∼
(

1 −2 3 | −1
2 1 −1 | 3

)
∼
(

1 −2 3 | −1
0 5 −7 | 5

)
x , y dependent variables, z free variable.
Solutions:

(x , y , z) = (1, 1, 0) + t

(
−1

5
,

7

5
, 1

)
.
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Matrices Systems of equations

The last exercise: Solve

−x + py + pz = 1

x + y + pz = 2

px + y + 2pz = 5− 2x

where p is a real parameter.
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Matrices Square matrices

Square matrices
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Matrices Square matrices

Definition

A matrix I of type (n, n) is called an identity matrix if I = (aij)
nn
i=1,j=1,

aii = 1 for all i ∈ {1, . . . , n} and aij = 0 whenever i 6= j .

For example,

I =

1 0 0
0 1 0
0 0 1


for n = 3. It holds that AI = IA = A for every matrix A of type (n, n).

Definition

Let A by a matrix of type (n, n). If there is a matrix B of type (n, n)
such that

AB = BA = I

then B will be called an inverse matrix to A and we use notation
B = A−1. If there is A−1, A is called a regular matrix, otherwise it is a
singular matrix.
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Matrices Square matrices

Computations:
Verify that (

2 −1
−5 3

)−1

=

(
3 1
5 2

)
.

Use it to compute the unknown matrix X :(
2 −1
−5 3

)
X +

(
2 −1
1 1

)
=

(
0
1

)(
−2 3

)
and the unknown matrix Y :

Y

(
2 −1
−5 3

)
=

(
3 4
3 3

)
.

Solve

2x − y = 6

−5x + 3y = 2.
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Matrices Square matrices

Lemma

Let A be a regular matrix. Then a system AxT = bT has a unique
solution.

Proof: It suffices to apply A−1 from the left hand side on both sides of
the equation. One gets

xT = A−1bT .
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Matrices Square matrices

The Gauss elimination may be used to find A−1. In particular, one has to
write down an augmented matrix (A|I ) and use elementary
transformations to get (I |B). If this is possible, then B = A−1.

Exercise: find A−1 to A =

(
2 −1
3 −3

)
:

(
2 −1 | 1 0
3 −3 | 0 1

)
∼
(

2 −1 | 1 0
1 −2 | −1 1

)
∼
(

1 −2 | −1 1
2 −1 | 1 0

)
∼
(

1 −2 | −1 1
0 3 | 3 −2

)
∼
(

1 −2 | −1 1
0 1 | 1 −2

3

)
∼
(

1 0 | 1 −1
3

0 1 | 1 −2
3

)

Consequently, A−1 =

(
1 1

3
1 −2

3

)
.

Try to find 1 0 −1
2 2 0
0 1 1

−1
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Matrices Square matrices
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write down an augmented matrix (A|I ) and use elementary
transformations to get (I |B). If this is possible, then B = A−1.

Exercise: find A−1 to A =

(
2 −1
3 −3

)
:
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Matrices Determinant

Definition

Let A be a square matrix of type (1, 1) – i.e., A =
(
1
)

for some a ∈ R.
Then we say that the determinant of such matrix A is detA = a. Let
A = (aij)

n
i ,j=1 be a square matrix of type (n, n). We denote by Mij the

determinant of the matrix (n − 1, n − 1) which arises from A by leaving
out the i−th row and j−th column. Choose k ∈ {1, . . . , n}. Then

detA = (−1)k+1ak1Mk1 + (−1)k+2ak2Mk2 + . . .+ (−1)k+naknMkn

=
n∑

j=1

(−1)k+jakjMkj .

Lemma

It holds that detA = detAT .
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Matrices Determinant

Examples
Let

A =

(
a11 a12

a21 a22

)
.

Then detA = a11a22 − a12a21.

Let

A =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 .

Then

detA = a11a22a33 + a12a23a31 + a13a21a32

− a13a22a31 − a12a21a33 − a11a23a32.

Václav Mácha (UCT) Linear Algebra 36 / 63



Matrices Determinant

Examples
Let

A =

(
a11 a12

a21 a22

)
.

Then detA = a11a22 − a12a21.
Let

A =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 .

Then

detA = a11a22a33 + a12a23a31 + a13a21a32

− a13a22a31 − a12a21a33 − a11a23a32.
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Matrices Determinant

Examples

Compute

det

2 1 1
1 0 3
2 1 0


Compute

det


2 2 1 −1
0 1 0 2
1 0 0 3
0 3 −2 1
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Matrices Determinant

Determinant and elementary transformations

Let B arise from A by multiplying one row by a real number α.
Then α detA = detB.

Let B arise from A by interchanging of two rows. Then
detA = − detB.

Let B arise from A by adding α–multiple of one row to another one.
Then detA = detB.

Lemma

Let A be a square matrix in the echelon form. Then the determinant of A
is a product of entries on the main diagonal, i.e., detA = a11a22 . . . ann.
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Matrices Determinant

Reminder
Compute

det
(
−2
)

=?

det

(
2 −3
4 2

)
=?

det

 1 1 0
−1 0 1
1 1 1

 =?

det


−1 1 0 2
0 3 −3 1
2 −3 0 2
0 0 3 −1

 =?
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Matrices Determinant

Lemma

Let A be n by n matrix. The following statements are equivalent

A is singular.

detA = 0.

AxT = 0 has a nontrivial solutions.

The columns (or rows) of A form a linearly dependent set.

rankA is strictly less than n.

Lemma

Let A be of type (n, n). The following statements are equivalent

A is regular.

detA 6= 0.

AxT = bT has unique solution for every right hand side b.

The columns (or rows) of A are linearly independent.

rankA = n.
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Matrices Determinant

Inverse matrix and determinant: Let

A =

(
a b
c d

)
be a regular matrix.

Then

A−1 =
1

detA

(
d −b
−c a

)
.

Solve

2x − y = 8

−2x + 3y = 12

Václav Mácha (UCT) Linear Algebra 41 / 63



Matrices Determinant

Inverse matrix and determinant: Let

A =

(
a b
c d

)
be a regular matrix. Then

A−1 =
1

detA

(
d −b
−c a

)
.

Solve
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Matrices Determinant

The Cramer rule: Consider a system AxT = bT . Assume A is a regular
(n, n) matrix. Let j = {1, . . . n} and denote Aj the matrix arising from A
by replacing j–th column by a vector bT . Then

xj =
detAj

detA
.

Example
Solve (by the Cramer rule)

3x − 2y + 4z = 3

−2x + 5y + z = 5

x + y − 5z = 0
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Matrices Eigenvectors and eigenvalues

Eigenvectors and eigenvalues:
Let A be a square matrix. We are looking for λ for which there is a
nontrivial solution to

AxT = λxT .

Such number λ is called eigenvalue.

This means that

(A− λI )xT = 0.

This equation has a nontrivial solution only if A− λI is a singular matrix.
Consequently, λ is an eigenvalue iff

det(A− λI ) = 0.

The polynomial det(A− λI ) is called a characteristic polynomial.
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Matrices Eigenvectors and eigenvalues

Let λ be an eigenvalue of A. A vector v solving

(A− λI )v = 0

is called eigenvector.
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Matrices Eigenvectors and eigenvalues

Exercise

Find all eigenvalues and eigenvectors to A =

(
5 1
4 5

)

Exercise: Find eigenvalues and eigenvectors to A =

(
10 −9
4 −2

)
.

Exercise: Find eigenvalues and eigenvectors to A =

(
1 0
0 1

)
.

Exercise: Find all eigenvectors and eigenvalues to A =

(
−2 −8
1 2

)
.
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Matrices Eigenvectors and eigenvalues

Generalized eigenvectors
A generalized eigenvector w corresponding to an eigenvalue λ is a vector
satisfying

(A− λI )wT = vT .

Exercise: Find all 2 eigenvectors (including the generalized one) of a

matrix A =

(
10 −9
4 −2

)
.

Exercise: Find all 3 eigenvectors (including the generalized one) of a

matrix A =

1 0 0
1 3 0
0 1 1

.
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Matrices Eigenvectors and eigenvalues

Applications:
A population of rabbits has the following characteristics:

1 Half of the rabbits survive their first year. Of those, half survive
their second year. The maximum life span is 3.

2 During the first year, the rabbits produce no offspring. The average
number of offspring per parent is 6 during the second year and 8
during the third year.

The population now consists of 24 rabbits in the first age, 24 rabbits in
the second and 20 rabbits in the third. How many rabbits will there be in
each age class in 1 year? Find a stable age distribution for the population
of rabbits.
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Matrices quadratic forms

Definition

Let A be an n by n symmetric matrix. The mapping

Q :
Rn → R
v 7→ vAvT

is called a quadratic form.

Examples

Quadratic form given by a matrix A =

(
1 −1
−1 1

)
is

(x , y) 7→
(
x y

)( 1 −1
−1 1

)(
x
y

)
= x2 − 2xy + y2

and we write Q(x , y) = x2 − 2xy + y2.
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Matrices quadratic forms

Examples (sequel):

A matrix A associated with the quadratic form

Q(x , y , z) = x2 − 3xz + y2 − z2

is A =

 1 0 −3
2

0 1 0
−3

2 0 −1

.

A quadratic form given by A =

1 0 2
0 −1 1
2 1 −2

is

Q(x , y , z) = x2 − y2 − 2z2 + 4xz + 2yz .
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Matrices quadratic forms

Definition

A quadratic form Q is

positive-definite if Q(v) > 0 for every v ∈ Rn \ {0}
positive-semidefinite if Q(v) ≥ 0 for every v ∈ Rn

negative-definite if Q(v) < 0 for every v ∈ Rn \ {0}
negative-semidefinite if Q(v) ≤ 0 for every v ∈ Rn

indefinite if there are v1, v2 ∈ R such that Q(v1) < 0 < Q(v2)

Exercise: Decide about the definiteness of the following quadratic
forms:

Q(x , y) = x2 − 2xy + y2

Q(x , y) = x2 − y2

Q(x , y) = x2 + 2xy + 2y2

Q(x , y) =
(
x y

)(1 1
1 0

)(
x
y

)

Václav Mácha (UCT) Linear Algebra 50 / 63



Matrices quadratic forms

Definition

A quadratic form Q is

positive-definite if Q(v) > 0 for every v ∈ Rn \ {0}
positive-semidefinite if Q(v) ≥ 0 for every v ∈ Rn

negative-definite if Q(v) < 0 for every v ∈ Rn \ {0}
negative-semidefinite if Q(v) ≤ 0 for every v ∈ Rn

indefinite if there are v1, v2 ∈ R such that Q(v1) < 0 < Q(v2)

Exercise: Decide about the definiteness of the following quadratic
forms:

Q(x , y) = x2 − 2xy + y2

Q(x , y) = x2 − y2

Q(x , y) = x2 + 2xy + 2y2

Q(x , y) =
(
x y

)(1 1
1 0

)(
x
y

)
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Matrices quadratic forms

Definition

The definiteness of a symmetric matrix A is inherited from the associated
quadratic form.

Sylvester rule:
Let A be n by n matrix. Denote D0 = 1, D1 = det(a11),

D2 = det

(
a11 a12

a21 a22

)
,. . . , Dn = detA and assume D0,D1, . . . ,Dn 6= 0. If

all products D0 · D1, D1 · D2, . . . ,Dn−1Dn are positive, A is a
positive-definite matrix. If all the products are negative, A is a
negative-definite matrix. Otherwise it is indefinite matrix.

Exercise:

Verify that Q(x , y) = x2 + 2xy + 2y2 is positive-definite.

Decide about the definiteness of Q(x , y) = −x2 − y2.
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Matrices quadratic forms

Exercises Decide about the definiteness of the following matrices1 0 0
0 −2 0
0 0 1


2 1 0

1 1 0
0 0 1


2 1 1

1 1 1
1 1 0
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Summary of Linear Algebra

Summary of linear Albegra
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Summary of Linear Algebra

Vector spaces:
Vectors (sum and multiplication by scalar).
Linear combination of a set of vectors {vi , i = 1 . . . n} is any vector of a
form

n∑
i=1

αivi

where αi ∈ R. All of such vectors form a linear span of {vi , i = 1 . . . n}.
Example:

Does u = (1,−1, 0, 2) belong to the linear span of v = (0, 1, 1, 0),
w = (−1, 1, 0, 1) and x = (2, 2, 1, 1)?
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Summary of Linear Algebra

Vectors {vi , i = 1 . . . n} are said to be linearly independent if the equation

n∑
i=1

αivi = 0

has the only solution αi = 0 for every {i = 1 . . . n}.
Example:

Decide whether vectors u = (2, 1, 1, 3), v = (1, 1, 0, 2) and
w = (0,−1, 1,−1) are linearly dependent or independent.

Václav Mácha (UCT) Linear Algebra 55 / 63



Summary of Linear Algebra

Vectors vi , i = 1, . . . n generate a vector space V if every vector v ∈ V is
a linear combination of {vi , i = 1, . . . , n}.
An independent set of generators is called basis. The number of vectors
in basis is called dimension.
Let {vi , i = 1, . . . , n} be a basis of V and let v ∈ V . Then v can be
expressed as a linear combination of vi and the coefficients of the linear
combination are called coordinates with respect to the given basis.
Example

Form vectors u = (1, 2, 1), v = (1, 0, 1) and w = (−1, 1,−2) a basis
of R3? If yes, find the coordinates of (2, 0, 0).
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Summary of Linear Algebra

Matrices: Sum, multiplication by a real number, product of matrices,
transposition,

elementary transformation: exchange of two rows, multiplication of a
nonzero number, adding α−multiple of one row to another.
The dimension of a space spanned by rows of a matrix (or equivalently,
number of linearly independent rows in a matrix) is called a rank of the
matrix. How to find out? Transform the matrix into the echelon form.
Example

What is the rank of 3 −2 2 1
1 0 0 1
1 −2 2 −1

?
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Summary of Linear Algebra

System of equations Solution by the Gauss elimination (transformation
into the echelon form): Find all solutions to

y − x − t − z = −3

2y − 2z − 2t = 2x − 4

2x + y + 2z − t = 0

x − 3y + z + 3t = 7

Recall: Pivots on position of the dependent variable.
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Summary of Linear Algebra

Square matrices:
Identity matrix, inverse matrix, regular and singular matrix, determinants

Is a matrix (
2 −1
1 0

)
regular? If yes, find the inverse matrix.How about1 −1 2

2 1 0
1 0 −3

?
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Václav Mácha (UCT) Linear Algebra 59 / 63



Summary of Linear Algebra

Eigenavalues and eigenvectors:
Nontrivial solutions to

(A− λI ) v = 0.

Example Find eigenvalues and eigenvectors of3 −1 2
1 3 2
0 0 4
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Summary of Linear Algebra

Quadratic forms:
Quadratic form is a function which maps Rn to R in such a way that
every v ∈ Rn is mapped to vAvT for some symmetric matrix A.
Examples

Write the quadratic form whose associated matrix is 1 −1 1
2

−1 −1 2
1
2 2 −2


Write the matrix associated to

Q(x , y , z , t) = x2 + 2y2 − z2 − t2 + 4xy − 6yz + 3zt.
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Summary of Linear Algebra

Definitness:
Let A be a square symmetric matrix. Sign of a number vAvT ?
Sylvester rule.
Example Decide about the definiteness of2 0 3

0 1 1
3 1 1
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Summary of Linear Algebra

That’s all folks
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