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Sequences Basic notions

A function a: N +— R, Dom a = N is called a sequence. We write a,
instead of a(n). The whole function is denoted by {a,}>° ;.
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Sequences Basic notions

A function a: N +— R, Dom a = N is called a sequence. We write a,
instead of a(n). The whole function is denoted by {a,}>° ;.
Several examples: a, = % ap=n, a, =1 and so on... Two ways how to

set a sequence:

m Explicit formula — relation for each term, for example
ap=3(n—1)+2.

m Implicit formula — the first term (or first few terms) is given and
there is a relation how to compute a n—th term from the previous
one. For example a3 =1, ap11 = (n+1)a, or by = bp =1 and
bni2 = bpt1 + by (the famous Fibonacci sequence).

Example

m Find an explicit formula for a1 = 1, ap11 = an + 2n+ 1 and verify

your claim.
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Sequences Basic notions

Boundedness — similarly to functions
Monotonicity — similarly to functions
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Sequences Basic notions

Boundedness — similarly to functions
Monotonicity — similarly to functions, anyway

Definition

We say that a, is
® increasing, if a, < apy1 for all n € N,
m decreasing, if a, > apy1 for all n € N,
m non-decreasing, if a, < apy1 for all n € N,
m non-increasing, if a, > a,41 for all n € N.

If {a,}52; posses one of these properties, we say it is monotone.

Examples
ma,=1-1

ma,=
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Sequences Limits

Let a, be a sequence. A number A € R is called a limit of a, if

Ve >0, dng € N, Vn > ng, |a, — A| < e.

We write lim a, = A.
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Sequences Limits

Let a, be a sequence. A number A € R is called a limit of a, if
Ve >0, dng € N, Vn > ng, |a, — A| < e.

We write lim a, = A.
A limit of a, is +oo if

VM >0, dng € N, Vn > ng, a, > M.

In that case we write lim a, = +o0.
A limit of a, is —oco if lim —a, = +o0o. We then write lim a, = —o0.
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Sequences Limits

Let a, be a sequence. A number A € R is called a limit of a, if

Ve >0, dng € N, Vn > ng, |a, — A| < e.

We write lim a, = A.
A limit of a, is +oo if

VM >0, dng € N, Vn > ng, a, > M.

In that case we write lim a, = +o0.

A limit of a, is —oo if lim —a, = +00. We then write lim a, = —oo.
Examples

.oy =1

ma,=n

ma,=q",g>1
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Sequences Limits

Let a, be a sequence and let A € R* be its limit. Then it is determined
uniqely.
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Sequences Limits

Observation

Let a, be a sequence and let A € R* be its limit. Then it is determined
uniqely.

Proof.

Assume, for simplicity, that there are two real numbers A and B such
that A # B and lima, = A and lima, = B. Take ¢ = $|A — B|. There
exists ng € N such that |a, — A| < € and |a, — B| < ¢ for all n > ng.
Then, necessarily,

2 2
]A—B\<\A—a,,|+]B—b,,\<§e<§]A—B\

which is a contradiction. O
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Sequences Arithmetic

Lemma (Arithmetic of limits)

Let a, and b, be sequences and let c € R. Then

lim (a, £ by) = lim a, & lim b,
lim (anb,) = limay, - lim b,
limca, = clima,
. an lim a,
lim— =

b, limb,

assuming the right hand side has meaning.

6/29
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Sequences Arithmetic

Lemma (Arithmetic of limits)

Let a, and b, be sequences and let c € R. Then

lim (a, £ by) = lim a, & lim b,
lim (anb,) = limay, - lim b,
limca, = clima,
. an lim a,
lim— =

b, limb,

assuming the right hand side has meaning.

Recall indefinite terms
00 0
oo —o00, —, 0-00, =, 1°°, ooo, 0°
00 0

which do not have any meaning. We also recall that é =0.

6/29
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Sequences Arithmetic

Proof.

We will assume (for simplicity) lima, = A € R and limb, = B € R.
Moreover, we consider only lim(a, + b,) = lim a, + lim b,. Take ¢ >0
arbitrarily. Since lim a, = A and lim b, = B there exists ng € N such that
lan — A| < 3¢ and |b, — B| < 3e. Consequently,

lan+ by —A—B|<l|ap—A|+|bp—B|<e¢

and we have just verified that A+ B is a limit of a, + b,. O
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Sequences Several further limits

Examples
m limqg”", g€ (0,1)
mlimn®—n
m lim :;;13
m lim %
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Sequences Further observations

Let a, be a sequence with real (finite) limit A. Then a, is a bounded
sequence.
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Sequences Further observations

Let a, be a sequence with real (finite) limit A. Then a, is a bounded
sequence.

Proof.

Indeed, take (for instance) € = 1. There exists ng € N such that
{an}n>n, is bounded from above by A+ 1 and from below by A — 1.
Next, {a1, a2, ..., an,} is a finite set and thus it is bounded from above
(say by M € R) and from below by m € R. Then, {a,}5°, is bounded
from above by max{M, A+ 1} and from below by min{m, A — 1}. O
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Sequences Further observations

Lemma (Sandwich lemma)

Let a,, by, ¢, be such that a, < b, < ¢, for all n € N. Assume,
moreover, that lima, = limc, = A € R*. Then lim b, exists and
lim b, = A.
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Sequences Further observations

Lemma (Sandwich lemma)

Let a,, b,, ¢, be such that a, < b, < ¢, for all n € N. Assume,
moreover, that lima, = limc, = A € R*. Then lim b, exists and
lim b, = A.

Proof.

Take an arbitrary € > 0. There exists ng € N such that for all n > ng we
have |a, — A| < € and |c, — A| < &. There may appear one of the
following cases:

m A> ¢, Inthat case, |b, — Al < |a, — A| <e.
m A< a, Inthatcase, |b, — Al < |cp, — Al <e.

m A€ (an, cp). In that case, since b, € [an, ¢,], we have
|bp— Al <lap—cnl=lan—A+A—cy| <|an—A|+ |b,— B| < 2e.
No matter which one is true, we have |b, — A| < 2¢ and A is a limit of
by, according to the definition of limit. O
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Sequences Further observations

Examples
m lim 22
n

m lim /57 4 37 + 2 (Hint: lim y/a =1 for every a > 0.)
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Sequences Further observations
Definition

Let a, be a sequence and let k : N — N be an increasing sequence of
natural numbers. Then ay, is a subsequence.
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Sequences Further observations

Let a, be a sequence and let k : N — N be an increasing sequence of
natural numbers. Then ay, is a subsequence.

Let a, be a sequence such that lima, = A, A € R*. Then every
subsequence ay, has a limit A.
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Sequences Further observations

Let a, be a sequence and let k : N +— N be an increasing sequence of
natural numbers. Then ay, is a subsequence.

Let a, be a sequence such that lima, = A, A € R*. Then every
subsequence ay, has a limit A.

Proof.

Once again, we assume for simplicity that A € R. For arbitrary € > 0
there exists ng such that |a, — A| < . However, as k, is an increasing
sequence of natural numbers, there exists n; € N such that k, > ng
whenever n > ny. That means that for ever n > n; we have

|ak, — A| < e. The proof is complete. O
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Sequences Further observations

Examples
m lim(=1)"(n+1)
mlimqg”, g <0.

n—1

m lim cos(mn) "~
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Sequences Further observations

Example

. 2
m Ilm%
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Sequences Further observations

Example
m lim g—i
Theorem (Heine)

Let c € R* and let d € R*. Then limy_,c f(x) = d if and only if
lim f(x,) = d for every sequence x,, such that lim x, = c.
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Sequences Further observations

Example
m lim g—i
Theorem (Heine)

Let c € R* and let d € R*. Then limy_,c f(x) = d if and only if
lim f(x,) = d for every sequence x,, such that lim x, = c.

Example
.62 (—1)"
| | Ilmm
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SEES Introduction

Series
Can be the sum of infinitely many numbers finite?
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SEES Introduction

Series
Can be the sum of infinitely many numbers finite?
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SEES Introduction

Series
Can be the sum of infinitely many numbers finite?

[ H
8
1
2
1
7
LI S
24T g e S
On the other hand
1+1+14+1+4...=
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SEES Introduction

Series

Can be the sum of infinitely many numbers finite?

On the other hand

Definition

A series is a sum of infinitely many numbers.

Vaclav Macha (UCT)

s
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1+1+14+1+...=00
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SEES Introduction

Recall

(g+1)(g-1)=¢"—1
(P+q+1)(g-1)=q¢ -1
(@"+¢" P +q"*+...+qg+1)(g—1)=¢"" -1

for every g € R.
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SEES Introduction

Recall

(g+1)(g-1)=¢"—1
(P+q+1)(g-1)=q¢ -1
(@"+¢" P +q"*+...+qg+1)(g—1)=¢"" -1

for every g € R.
Thus

for every q € (—1,1).
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SEES Introduction

Let {a;}7°, C R be a sequence. We define the n—th partial sum

n
Sp = E a;.
i=0

If lim,_~ Sp exists and is finite, than we say that Zj—’io aj converges and
its value is lim,_ o sp. If a sum does not converge, we say that it
diverges.
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SEES Introduction

Let {a;}7°, C R be a sequence. We define the n—th partial sum

n
Sp = E a;.
i=0

If lim,_~ Sp exists and is finite, than we say that Zj—’io aj converges and
its value is lim,_ o sp. If a sum does not converge, we say that it
diverges.

Examples
m What is the second, third and fourth partial sum of > 2°(—1)". In
general, what is its n—th partial sum? Does the sum converge?
m What is the second, third and fourth partial sum of
ppa <% — H%) In general, what is its n—th partial sum? Does
the sum converge?
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SEES Introduction

Let 3> 2, aj converges, then limp_,o ap = 0.
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SEES Introduction

Let S"°° a; converges, then lim,_soo an = 0.
i=0

Proof: It holds that

lim a, = lim s, —s,.1=0
n—oo n—oo

where the last equality is true because of the arithmetic of limits.
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SEES Introduction

Observation

Let 3> 2, aj converges, then limp_,o ap = 0.
Proof: It holds that

lim a, = lim s, —s,.1=0
n—o0o n—oo

where the last equality is true because of the arithmetic of limits.
Examples

">, 1:1+1+1+... diverge.

m How about > >°

nln
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SEES Positive numbers

Series of positive numbers
During this part, we suppose a, > 0 for every n € {0,1,2,3...}.
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SEES Positive numbers

Series of positive numbers

During this part, we suppose a, > 0 for every n € {0,1,2,3..

Theorem
Let {ap}32 o C R and {bs}72, C R fulfill a, < b, for every
ne{0,1,2,3,...}. Then

m ify >, bn converges, then also > a, converges,

m ifYy 2, an diverges, then also > " b, diverges.

Example
- ZOO Z"ﬁn
1
u Zn:l Vvn'
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SEES Positive numbers

Scales:
m It holds that

oo
> d"
n=0
converges for g € (0,1) and diverges for g > 1.
m It holds that

e}

1

nP
n=1

converges for p > 1 and diverges for p < 1.
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SEES Positive numbers

Limit version of the criterion

Let {ap}22, C R and {by}72 o C R fulfill

m lim 3 € (0,00), then 3°72 a, converge if and only if 372 4 by
converge,

m lim 2 =0, then if Y7 b, converge then also 7 a, converge,
. - -

m lim 2 = oo, then if ) 4 a, converge, then also ) b, converge.
. - .

Examples

o) n?+3n

m Decide about the convergence of )~ 1y

m Decide about the convergence of > 7, sin? (%)
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SEES Positive numbers

Reminder
Examples

m Let the sequence 77, a, has partial sums of the form

_ 5+8n?
- 2-7n%

Sn

Decide about the convergence of the series.
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SEES Positive numbers

Reminder
Examples

m Let the sequence 77, a, has partial sums of the form

5 + 8n?
2 —7n%

Shp =

Decide about the convergence of the series.

m Decide about the convergence of the following series

Z 6 + 8n + 9n? i32+,,21_3,, i (—6)"
3+2n+n?’ ’ 82—n "’
n=0 n=1
§33m" 53 10 53 n—1
n?+1’ n? —4n+3’ ns+1
n=5 n=4 n=1
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SEES Positive numbers

Observation (The d'Alambert criterion — ration test)

Let {an}72 o C R be a sequence of positive real numbers. Then

an+41
an

m iflimn oo 222 > 1 then Y702 a, diverges.
. -

miflim, < 1 then ZZO:O a, converges,
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SEES Positive numbers

Observation (The d'Alambert criterion — ration test)

Let {an}72 o C R be a sequence of positive real numbers. Then

m iflimp e 2252 < 1 then Y 72 an converges,
. -

m iflimn oo 222 > 1 then Y702 a, diverges.
. -

Example

m Examine the convergence of

= (o1
Z (2n)!

n=0
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SEES Positive numbers

Observation (The Cauchy criterion — root test)

Let {an}32; C R be a sequence of positive real numbers. Then
m iflimp_ o0 /an < 1 then Y 72 a, converges,
m iflimp_ o0 /@, > 1 then Y 02 o a, diverges.
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SEES Positive numbers

Observation (The Cauchy criterion — root test)

Let {an}32; C R be a sequence of positive real numbers. Then
m iflimp_ o0 /an < 1 then Y 72 a, converges,
m iflimp_ o0 /@, > 1 then Y 02 o a, diverges.

00 n—1 n(n—1)
Z(n—{—l) '

n=1

m Examine
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SEES Positive numbers

series, reminder:
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SEES Positive numbers

series, reminder:

m Rarely, one can tell the exact value of a series (372, q" = ﬁ for
qc (_17 1))

m Rather than that, we focus on finiteness of a series — convergence vs
divergence.

m Necessary condition for convergence: If > 72, a, converges then
lima, =0.

m Are all summands non-negative (non-positive)?
m Yes, then we may use: comparison, the ration test, the root test.
m No, then we will see today.
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SEES Positive numbers

series, reminder:
m Rarely, one can tell the exact value of a series (372, q" = ﬁ for

q € (_17 1))

m Rather than that, we focus on finiteness of a series — convergence vs
divergence.

m Necessary condition for convergence: If > 72, a, converges then
lima, =0.

m Are all summands non-negative (non-positive)?
m Yes, then we may use: comparison, the ration test, the root test.
m No, then we will see today.

Exercises:
1-2n .
m Does Yp2 3,5 converge or diverge?

m Does ) converge or diverge?

00 3
n=1 n247n+12
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Series general terms

Let

oo

Z’an‘

n=0

converges. Then we say that > °  a, is absolutely convergent (or
converges absolutely)
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Series general terms

Let
o0
> 1|
n=0

converges. Then we say that > °  a, is absolutely convergent (or
converges absolutely)

Let Y07, an converge absolutely. Then it converges.
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Series general terms

Let

oo

Z’an‘

n=0

converges. Then we say that > °  a, is absolutely convergent (or
converges absolutely)

Let Y07, an converge absolutely. Then it converges.
Example

sinn
n2 *

m Examine Y 07,
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Series general terms

Theorem (The Leibnitz criterion)

Let {a,}22, C R be a sequence of positive numbers such that
m lim, pa,=0.

® a, iSs a monotone sequence.

Then,
o
> (-1)"a,
n=0
converges.
Viclav Macha (UCT) Sand$S
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Series general terms

Theorem (The Leibnitz criterion)

Let {a,}22, C R be a sequence of positive numbers such that
m lim, pa,=0.

® a, iSs a monotone sequence.

Then,

o
>_(=1)a,
n=0

converges.
Example
: 0o (=11
m Examine > 7, 5.

m Examine Y 77, w
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Series about applications

Gordon’s growth model: Shares bought at a time t = 0 for Py give us
at time t = 1 the following return r

o Divi + P1 — Py
_—PO

where Divy is the dividend paid during the first year. We deduce
Divq Py
Py = .
071 +r + 1+r
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Series about applications

Gordon’s growth model: Shares bought at a time t = 0 for Py give us
at time t = 1 the following return r

F_ Divi + P1 — Py
==
where Divy is the dividend paid during the first year. We deduce
Divq Py
Py = .
071 +r + 1+r

Consequently
o0 .
Div;
Po = E —_—
T (i)

We assume constant growth of the dividends, in particular we assume
Divy given and Divy = (14 g) - Divy_1.
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Series about applications

Gordon’s growth model: Shares bought at a time t = 0 for Py give us
at time t = 1 the following return r

F_ Divi + P1 — Py
==
where Divy is the dividend paid during the first year. We deduce
Divq Py
Py = .
071 +r + 1+r

Consequently
> Din
Po = —_—
=2 (1+ )t
t=1
We assume constant growth of the dividends, in particular we assume
Divy given and Div; = (1 4 g) - Div¢—1.Consequently
DiVl
(r—g)

0 =
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Series Last one remark

It holds that
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