Sequences and series

Václav Mácha

University of Chemistry and Technology

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

A function $a : \mathbb{N} \mapsto \mathbb{R}$, Dom $a = \mathbb{N}$ is called a sequence. We write a_n instead of a(n). The whole function is denoted by $\{a_n\}_{n=1}^{\infty}$.

A function $a : \mathbb{N} \mapsto \mathbb{R}$, Dom $a = \mathbb{N}$ is called a sequence. We write a_n instead of a(n). The whole function is denoted by $\{a_n\}_{n=1}^{\infty}$. Several examples: $a_n = \frac{1}{n}$, $a_n = n$, $a_n = 1$ and so on...

• = • • = •

A function $a : \mathbb{N} \mapsto \mathbb{R}$, Dom $a = \mathbb{N}$ is called a sequence. We write a_n instead of a(n). The whole function is denoted by $\{a_n\}_{n=1}^{\infty}$. Several examples: $a_n = \frac{1}{n}$, $a_n = n$, $a_n = 1$ and so on... Two ways how to set a sequence:

- Explicit formula relation for each term, for example $a_n = 3(n-1) + 2$.
- Implicit formula the first term (or first few terms) is given and there is a relation how to compute a *n*-th term from the previous one. For example a₁ = 1, a_{n+1} = (n + 1)a_n or b₁ = b₂ = 1 and b_{n+2} = b_{n+1} + b_n (the famous Fibonacci sequence).

Example

■ Find an explicit formula for *a*₁ = 1, *a*_{*n*+1} = *a*_{*n*} + 2*n* + 1 and verify your claim.

イロト イポト イヨト イヨト 二日

Boundedness – similarly to functions Monotonicity – similarly to functions

æ

Boundedness – similarly to functions Monotonicity – similarly to functions, anyway

Definition

We say that a_n is

- increasing, if $a_n < a_{n+1}$ for all $n \in \mathbb{N}$,
- decreasing, if $a_n > a_{n+1}$ for all $n \in \mathbb{N}$,
- non-decreasing, if $a_n \leq a_{n+1}$ for all $n \in \mathbb{N}$,
- non-increasing, if $a_n \ge a_{n+1}$ for all $n \in \mathbb{N}$.

If $\{a_n\}_{n=1}^{\infty}$ posses one of these properties, we say it is monotone.

Examples

•
$$a_n = 1 - \frac{1}{n}$$
,
• $a_n = \frac{n^2}{2^n}$.

Let a_n be a sequence. A number $A \in \mathbb{R}$ is called a limit of a_n if

$$\forall \varepsilon > 0, \ \exists n_0 \in \mathbb{N}, \ \forall n > n_0, \ |a_n - A| < \varepsilon.$$

We write $\lim a_n = A$.

æ

Let a_n be a sequence. A number $A \in \mathbb{R}$ is called a limit of a_n if

$$\forall \varepsilon > 0, \ \exists n_0 \in \mathbb{N}, \ \forall n > n_0, \ |a_n - A| < \varepsilon.$$

We write $\lim a_n = A$. A limit of a_n is $+\infty$ if

$$\forall M > 0, \exists n_0 \in \mathbb{N}, \forall n > n_0, a_n > M.$$

In that case we write $\lim a_n = +\infty$. A limit of a_n is $-\infty$ if $\lim -a_n = +\infty$. We then write $\lim a_n = -\infty$.

3 1 4 3 1

Let a_n be a sequence. A number $A \in \mathbb{R}$ is called a limit of a_n if

$$\forall \varepsilon > 0, \ \exists n_0 \in \mathbb{N}, \ \forall n > n_0, \ |a_n - A| < \varepsilon.$$

We write $\lim a_n = A$. A limit of a_n is $+\infty$ if

$$\forall M > 0, \exists n_0 \in \mathbb{N}, \forall n > n_0, a_n > M.$$

In that case we write $\lim a_n = +\infty$. A limit of a_n is $-\infty$ if $\lim -a_n = +\infty$. We then write $\lim a_n = -\infty$.

Examples

a_n = $\frac{1}{n}$

•
$$a_n = n$$

$$\bullet a_n = q^n, \ q > 1.$$

3 K K 3 K

Let a_n be a sequence and let $A \in \mathbb{R}^*$ be its limit. Then it is determined uniquely.

æ

Let a_n be a sequence and let $A \in \mathbb{R}^*$ be its limit. Then it is determined uniquely.

Proof.

Assume, for simplicity, that there are two real numbers A and B such that $A \neq B$ and $\lim a_n = A$ and $\lim a_n = B$. Take $\varepsilon = \frac{1}{3}|A - B|$. There exists $n_0 \in \mathbb{N}$ such that $|a_n - A| < \varepsilon$ and $|a_n - B| < \varepsilon$ for all $n > n_0$. Then, necessarily,

$$|A-B| < |A-a_n| + |B-b_n| < \frac{2}{3}\varepsilon < \frac{2}{3}|A-B|$$

which is a contradiction.

Lemma (Arithmetic of limits)

Let a_n and b_n be sequences and let $c \in \mathbb{R}$. Then

$$\lim (a_n \pm b_n) = \lim a_n \pm \lim b_n$$
$$\lim (a_n b_n) = \lim a_n \cdot \lim b_n$$
$$\lim ca_n = c \lim a_n$$
$$\lim \frac{a_n}{b_n} = \frac{\lim a_n}{\lim b_n}$$

assuming the right hand side has meaning.

3 1 4 3 1

Lemma (Arithmetic of limits)

Let a_n and b_n be sequences and let $c \in \mathbb{R}$. Then

$$\lim (a_n \pm b_n) = \lim a_n \pm \lim b_n$$
$$\lim (a_n b_n) = \lim a_n \cdot \lim b_n$$
$$\lim ca_n = c \lim a_n$$
$$\lim \frac{a_n}{b_n} = \frac{\lim a_n}{\lim b_n}$$

assuming the right hand side has meaning.

Recall indefinite terms

$$\infty-\infty,\ rac{\infty}{\infty},\ 0\cdot\infty,\ rac{0}{0},\ 1^\infty,\ \infty^0,\ 0^0$$

which do not have any meaning. We also recall that $\frac{1}{\infty} = 0$.

A B M A B M

Image: Image:

Proof.

We will assume (for simplicity) $\lim a_n = A \in \mathbb{R}$ and $\lim b_n = B \in \mathbb{R}$. Moreover, we consider only $\lim(a_n + b_n) = \lim a_n + \lim b_n$. Take $\varepsilon > 0$ arbitrarily. Since $\lim a_n = A$ and $\lim b_n = B$ there exists $n_0 \in \mathbb{N}$ such that $|a_n - A| < \frac{1}{2}\varepsilon$ and $|b_n - B| < \frac{1}{2}\varepsilon$. Consequently,

$$|a_n + b_n - A - B| \le |a_n - A| + |b_n - B| < \varepsilon$$

and we have just verified that A + B is a limit of $a_n + b_n$.

Examples

- Iim q^n , $q \in (0,1)$
- $\blacksquare \lim n^2 n$
- $\blacksquare \lim \frac{n+1}{n^2+3}$
- $\lim \frac{n^3 + 3n^2}{3n^3 + n^2}$

æ

Let a_n be a sequence with real (finite) limit A. Then a_n is a bounded sequence.

æ

Let a_n be a sequence with real (finite) limit A. Then a_n is a bounded sequence.

Proof.

Indeed, take (for instance) $\varepsilon = 1$. There exists $n_0 \in \mathbb{N}$ such that $\{a_n\}_{n>n_0}$ is bounded from above by A + 1 and from below by A - 1. Next, $\{a_1, a_2, \ldots, a_{n_0}\}$ is a finite set and thus it is bounded from above (say by $M \in \mathbb{R}$) and from below by $m \in \mathbb{R}$. Then, $\{a_n\}_{n=1}^{\infty}$ is bounded from above by max $\{M, A + 1\}$ and from below by min $\{m, A - 1\}$.

· · · · · · · · ·

Lemma (Sandwich lemma)

Let a_n , b_n , c_n be such that $a_n \leq b_n \leq c_n$ for all $n \in \mathbb{N}$. Assume, moreover, that $\lim a_n = \lim c_n = A \in \mathbb{R}^*$. Then $\lim b_n$ exists and $\lim b_n = A$.

э

Lemma (Sandwich lemma)

Let a_n , b_n , c_n be such that $a_n \leq b_n \leq c_n$ for all $n \in \mathbb{N}$. Assume, moreover, that $\lim a_n = \lim c_n = A \in \mathbb{R}^*$. Then $\lim b_n$ exists and $\lim b_n = A$.

Proof.

Take an arbitrary $\varepsilon > 0$. There exists $n_0 \in \mathbb{N}$ such that for all $n > n_0$ we have $|a_n - A| < \varepsilon$ and $|c_n - A| < \varepsilon$. There may appear one of the following cases:

•
$$A \ge c_n$$
. In that case, $|b_n - A| < |a_n - A| < \varepsilon$.

- $A \leq a_n$. In that case, $|b_n A| < |c_n A| < \varepsilon$.
- $A \in (a_n, c_n)$. In that case, since $b_n \in [a_n, c_n]$, we have $|b_n - A| < |a_n - c_n| = |a_n - A + A - c_n| \le |a_n - A| + |b_n - B| < 2\varepsilon$.

No matter which one is true, we have $|b_n - A| < 2\varepsilon$ and A is a limit of b_n according to the definition of limit.

э

イロト 不得 トイヨト イヨト

Examples

$\lim \frac{\cos n}{n}$ $\lim \sqrt[n]{5^n + 3^n + 2} (Hint: \lim \sqrt[n]{a} = 1 \text{ for every } a > 0.)$

æ

Let a_n be a sequence and let $k : \mathbb{N} \mapsto \mathbb{N}$ be an increasing sequence of natural numbers. Then a_{k_n} is a subsequence.

(日) (四) (日) (日) (日)

Let a_n be a sequence and let $k : \mathbb{N} \mapsto \mathbb{N}$ be an increasing sequence of natural numbers. Then a_{k_n} is a subsequence.

Observation

Let a_n be a sequence such that $\lim a_n = A$, $A \in \mathbb{R}^*$. Then every subsequence a_{k_n} has a limit A.

3 1 4 3 1

Let a_n be a sequence and let $k : \mathbb{N} \mapsto \mathbb{N}$ be an increasing sequence of natural numbers. Then a_{k_n} is a subsequence.

Observation

Let a_n be a sequence such that $\lim a_n = A$, $A \in \mathbb{R}^*$. Then every subsequence a_{k_n} has a limit A.

Proof.

Once again, we assume for simplicity that $A \in \mathbb{R}$. For arbitrary $\varepsilon > 0$ there exists n_0 such that $|a_n - A| < \varepsilon$. However, as k_n is an increasing sequence of natural numbers, there exists $n_1 \in \mathbb{N}$ such that $k_n > n_0$ whenever $n > n_1$. That means that for ever $n > n_1$ we have $|a_{k_n} - A| < \varepsilon$. The proof is complete.

Examples

- $\lim(-1)^n(n+1)$
- If $m q^n$, q < 0.
- Iim $\cos(\pi n) \frac{n-1}{n^2}$

æ

Example $Iim \frac{n^2}{2^n}$

3

Example
Im
$$\frac{n^2}{2^n}$$

Theorem (Heine)

Let $c \in \mathbb{R}^*$ and let $d \in \mathbb{R}^*$. Then $\lim_{x\to c} f(x) = d$ if and only if $\lim f(x_n) = d$ for every sequence x_n such that $\lim x_n = c$.

э

Example Im $\frac{n^2}{2^n}$

Theorem (Heine)

Let $c \in \mathbb{R}^*$ and let $d \in \mathbb{R}^*$. Then $\lim_{x\to c} f(x) = d$ if and only if $\lim f(x_n) = d$ for every sequence x_n such that $\lim x_n = c$.

Example

Im
$$\frac{6n^2 + (-1)^n}{(n+1)^3 - n^3}$$

э

Can be the sum of infinitely many numbers finite?

æ

Can be the sum of infinitely many numbers finite?

æ

Can be the sum of infinitely many numbers finite?

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \ldots < \infty$$

æ

Can be the sum of infinitely many numbers finite?

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \ldots < \infty$$

On the other hand

 $1+1+1+1+\ldots = \infty$

æ

- E > - E >

Can be the sum of infinitely many numbers finite?

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \ldots < \infty$$

On the other hand

 $1+1+1+1+\ldots = \infty$

Definition

A series is a sum of infinitely many numbers.

Václav Mácha (UCT)

∃ ► < ∃ ►

Recall

$$(q+1)(q-1) = q^2 - 1$$

 $(q^2 + q + 1)(q-1) = q^3 - 1$
 $(q^n + q^{n-1} + q^{n-2} + \ldots + q + 1)(q-1) = q^{n+1} - 1.$

for every $q \in \mathbb{R}$.

3

Recall

$$(q+1)(q-1) = q^2 - 1$$

 $(q^2 + q + 1)(q-1) = q^3 - 1$
 $(q^n + q^{n-1} + q^{n-2} + \ldots + q + 1)(q-1) = q^{n+1} - 1.$

for every $q \in \mathbb{R}$. Thus

$$\sum_{i=0}^{\infty}q^i=rac{1}{1-q}.$$

for every $q \in (-1, 1)$.

2

Let $\{a_i\}_{i=0}^\infty \subset \mathbb{R}$ be a sequence. We define the *n*-th partial sum

$$s_n=\sum_{i=0}^n a_i.$$

If $\lim_{n\to\infty} s_n$ exists and is finite, than we say that $\sum_{i=0}^{\infty} a_i$ converges and its value is $\lim_{n\to\infty} s_n$. If a sum does not converge, we say that it *diverges*.

Let $\{a_i\}_{i=0}^\infty \subset \mathbb{R}$ be a sequence. We define the *n*-th partial sum

$$s_n=\sum_{i=0}^n a_i.$$

If $\lim_{n\to\infty} s_n$ exists and is finite, than we say that $\sum_{i=0}^{\infty} a_i$ converges and its value is $\lim_{n\to\infty} s_n$. If a sum does not converge, we say that it *diverges*.

Examples

- What is the second, third and fourth partial sum of ∑_{i=0}[∞](-1)ⁱ. In general, what is its *n*-th partial sum? Does the sum converge?
- What is the second, third and fourth partial sum of $\sum_{i=1}^{\infty} \left(\frac{1}{i} \frac{1}{i+1}\right)$. In general, what is its *n*-th partial sum? Does the sum converge?

Let $\sum_{i=0}^{\infty} a_i$ converges, then $\lim_{n\to\infty} a_n = 0$.

2

Let
$$\sum_{i=0}^{\infty} a_i$$
 converges, then $\lim_{n\to\infty} a_n = 0$.

Proof: It holds that

$$\lim_{n\to\infty}a_n=\lim_{n\to\infty}s_n-s_{n-1}=0$$

where the last equality is true because of the arithmetic of limits.

æ

Let
$$\sum_{i=0}^{\infty} a_i$$
 converges, then $\lim_{n\to\infty} a_n = 0$.

1

Proof: It holds that

$$\lim_{n\to\infty}a_n=\lim_{n\to\infty}s_n-s_{n-1}=0$$

where the last equality is true because of the arithmetic of limits. **Examples**

•
$$\sum_{n=0}^{\infty} 1 = 1 + 1 + 1 + \dots$$
 diverge.

• How about
$$\sum_{n=1}^{\infty} \frac{1}{n}$$
?

æ

Series of positive numbers

During this part, we suppose $a_n \ge 0$ for every $n \in \{0, 1, 2, 3...\}$.

э

· · · · · · · · ·

Series of positive numbers

During this part, we suppose $a_n \ge 0$ for every $n \in \{0, 1, 2, 3...\}$.

Theorem

Let
$$\{a_n\}_{n=0}^{\infty} \subset \mathbb{R}$$
 and $\{b_n\}_{n=0}^{\infty} \subset \mathbb{R}$ fulfill $a_n \leq b_n$ for every $n \in \{0, 1, 2, 3, \ldots\}$. Then
if $\sum_{n=0}^{\infty} b_n$ converges, then also $\sum_{n=0}^{\infty} a_n$ converges,
if $\sum_{n=0}^{\infty} a_n$ diverges, then also $\sum_{n=0}^{\infty} b_n$ diverges.

Example

$$\sum_{n=1}^{\infty} \frac{2^n + n}{5^n}$$
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}.$$

э

Scales:

It holds that

converges for $q \in (0,1)$ and diverges for $q \ge 1$.

It holds that

$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$

converges for p > 1 and diverges for $p \le 1$.

э

∃ ► < ∃ ►

Limit version of the criterion

Theorem

Let $\{a_n\}_{n=0}^{\infty} \subset \mathbb{R}$ and $\{b_n\}_{n=0}^{\infty} \subset \mathbb{R}$ fulfill

• $\lim \frac{a_n}{b_n} \in (0, \infty)$, then $\sum_{n=0}^{\infty} a_n$ converge if and only if $\sum_{n=0}^{\infty} b_n$ converge,

•
$$\lim \frac{a_n}{b_n} = 0$$
, then if $\sum_{n=0}^{\infty} b_n$ converge then also $\sum_{n=0}^{\infty} a_n$ converge,

Im
$$\frac{a_n}{b_n} = \infty$$
, then if $\sum_{n=0}^{\infty} a_n$ converge, then also $\sum_{n=0}^{\infty} b_n$ converge.

Examples

- Decide about the convergence of $\sum_{n=1}^{\infty} \frac{n^2+3n}{(n^3+1)^{3/2}}$.
- Decide about the convergence of $\sum_{n=1}^{\infty} \sin^2\left(\frac{1}{n}\right)$.

• • = • • = •

Reminder Examples

• Let the sequence $\sum_{n=1}^{\infty} a_n$ has partial sums of the form

$$s_n = \frac{5+8n^2}{2-7n^2}.$$

Decide about the convergence of the series.

э

4 B K 4 B K

Reminder Examples

• Let the sequence $\sum_{n=1}^{\infty} a_n$ has partial sums of the form

$$s_n = \frac{5+8n^2}{2-7n^2}.$$

Decide about the convergence of the series.

Decide about the convergence of the following series

$$\sum_{n=1}^{\infty} \frac{6+8n+9n^2}{3+2n+n^2}, \qquad \sum_{n=0}^{\infty} 3^{2+n} 2^{1-3n}, \qquad \sum_{n=1}^{\infty} \frac{(-6)^n}{8^{2-n}},$$
$$\sum_{n=5}^{\infty} \frac{3ne^n}{n^2+1}, \qquad \sum_{n=4}^{\infty} \frac{10}{n^2-4n+3}, \qquad \sum_{n=1}^{\infty} \frac{n-1}{\sqrt{n^6+1}}.$$

Image: Image:

Observation (The d'Alambert criterion – ration test)

Let $\{a_n\}_{n=0}^\infty \subset \mathbb{R}$ be a sequence of positive real numbers. Then

• if
$$\lim_{n\to\infty} \frac{a_{n+1}}{a_n} < 1$$
 then $\sum_{n=0}^{\infty} a_n$ converges,

• if
$$\lim_{n\to\infty} \frac{a_{n+1}}{a_n} > 1$$
 then $\sum_{n=0}^{\infty} a_n$ diverges.

э

Observation (The d'Alambert criterion – ration test)

Let $\{a_n\}_{n=0}^{\infty} \subset \mathbb{R}$ be a sequence of positive real numbers. Then

• if
$$\lim_{n\to\infty} \frac{a_{n+1}}{a_n} < 1$$
 then $\sum_{n=0}^{\infty} a_n$ converges,

• if
$$\lim_{n\to\infty} \frac{a_{n+1}}{a_n} > 1$$
 then $\sum_{n=0}^{\infty} a_n$ diverges.

Example

Examine the convergence of

$$\sum_{n=0}^{\infty} \frac{(n!)^2}{(2n)!}.$$

Observation (The Cauchy criterion – root test)

Let $\{a_n\}_{n=0}^{\infty} \subset \mathbb{R}$ be a sequence of positive real numbers. Then

- if $\lim_{n\to\infty} \sqrt[n]{a_n} < 1$ then $\sum_{n=0}^{\infty} a_n$ converges,
- if $\lim_{n\to\infty} \sqrt[n]{a_n} > 1$ then $\sum_{n=0}^{\infty} a_n$ diverges.

Observation (The Cauchy criterion – root test)

Let $\{a_n\}_{n=0}^{\infty} \subset \mathbb{R}$ be a sequence of positive real numbers. Then if $\lim_{n\to\infty} \sqrt[n]{a_n} < 1$ then $\sum_{n=0}^{\infty} a_n$ converges, if $\lim_{n\to\infty} \sqrt[n]{a_n} > 1$ then $\sum_{n=0}^{\infty} a_n$ diverges.

Examine

$$\sum_{n=1}^{\infty} \left(\frac{n-1}{n+1}\right)^{n(n-1)}$$

.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

series, reminder:

3

series, reminder:

- Rarely, one can tell the exact value of a series $(\sum_{n=0}^{\infty} q^n = \frac{1}{1-q}$ for $q \in (-1,1)$)
- Rather than that, we focus on finiteness of a series convergence vs divergence.
- Necessary condition for convergence: If $\sum_{n=1}^{\infty} a_n$ converges then $\lim a_n = 0$.
- Are all summands non-negative (non-positive)?
 - Yes, then we may use: comparison, the ration test, the root test.
 - No, then we will see today.

A B M A B M

series, reminder:

- Rarely, one can tell the exact value of a series $(\sum_{n=0}^{\infty} q^n = \frac{1}{1-q}$ for $q \in (-1,1)$)
- Rather than that, we focus on finiteness of a series convergence vs divergence.
- Necessary condition for convergence: If $\sum_{n=1}^{\infty} a_n$ converges then $\lim a_n = 0$.
- Are all summands non-negative (non-positive)?
 - Yes, then we may use: comparison, the ration test, the root test.
 - No, then we will see today.

Exercises:

- Does $\sum_{n=1}^{\infty} \frac{3^{1-2n}}{n^2+1}$ converge or diverge?
- Does $\sum_{n=1}^{\infty} \frac{3}{n^2 + 7n + 12}$ converge or diverge?

イロト イポト イヨト イヨト 二日

Let

$$\sum_{n=0}^{\infty} |a_n|$$

converges. Then we say that $\sum_{n=0}^{\infty} a_n$ is absolutely convergent (or converges absolutely)

æ

Let

$$\sum_{n=0}^{\infty} |a_n|$$

converges. Then we say that $\sum_{n=0}^{\infty} a_n$ is absolutely convergent (or converges absolutely)

Observation

Let $\sum_{n=0}^{\infty} a_n$ converge absolutely. Then it converges.

æ

- 4 臣 🕨 🛪 臣 🕨 👘

Let

$$\sum_{n=0}^{\infty} |a_n|$$

converges. Then we say that $\sum_{n=0}^{\infty} a_n$ is absolutely convergent (or converges absolutely)

Observation

Let $\sum_{n=0}^{\infty} a_n$ converge absolutely. Then it converges.

Example

• Examine
$$\sum_{n=1}^{\infty} \frac{\sin n}{n^2}$$
.

イロト イポト イヨト イヨト 二日

Theorem (The Leibnitz criterion)

Let $\{a_n\}_{n=0}^{\infty} \subset \mathbb{R}$ be a sequence of positive numbers such that $\lim_{n \to 0} a_n = 0.$

■ *a_n* is a monotone sequence.

Then,

$$\sum_{n=0}^{\infty} (-1)^n a_n$$

converges.

æ

Theorem (The Leibnitz criterion)

Let $\{a_n\}_{n=0}^{\infty} \subset \mathbb{R}$ be a sequence of positive numbers such that $\lim_{n \to 0} a_n = 0.$

■ *a_n* is a monotone sequence.

Then,

$$\sum_{n=0}^{\infty} (-1)^n a_n$$

converges.

Example

• Examine
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{7+2n}$$
.
• Examine $\sum_{n=1}^{\infty} \frac{(-1)^n (1+(-1)^n)}{n}$.

æ

▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Image: Image:

Gordon's growth model: Shares bought at a time t = 0 for P_0 give us at time t = 1 the following return r

$$r=\frac{Div_1+P_1-P_0}{P_0}$$

where Div_1 is the dividend paid during the first year. We deduce

$$P_0 = \frac{Div_1}{1+r} + \frac{P_1}{1+r}.$$

- E > - E >

Gordon's growth model: Shares bought at a time t = 0 for P_0 give us at time t = 1 the following return r

$$r = \frac{Div_1 + P_1 - P_0}{P_0}$$

where Div_1 is the dividend paid during the first year. We deduce

$$P_0 = \frac{Div_1}{1+r} + \frac{P_1}{1+r}$$

Consequently

$$P_0 = \sum_{t=1}^{\infty} \frac{\text{Div}_t}{(1+r)^t}.$$

We assume constant growth of the dividends, in particular we assume Div_1 given and $Div_t = (1 + g) \cdot Div_{t-1}$.

A (1) < A (2) < A (2) </p>

Gordon's growth model: Shares bought at a time t = 0 for P_0 give us at time t = 1 the following return r

$$r = \frac{Div_1 + P_1 - P_0}{P_0}$$

where Div_1 is the dividend paid during the first year. We deduce

$$P_0 = \frac{Div_1}{1+r} + \frac{P_1}{1+r}$$

Consequently

$$P_0 = \sum_{t=1}^{\infty} \frac{\text{Div}_t}{(1+r)^t}.$$

We assume constant growth of the dividends, in particular we assume Div_1 given and $Div_t = (1 + g) \cdot Div_{t-1}$. Consequently

$$P_0 = \frac{Div_1}{(r-g)}$$

It holds that

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}$$

æ

<ロト < 四ト < 三ト < 三ト