Sequences and series

Václav Mácha
University of Chemistry and Technology

A function $a: \mathbb{N} \mapsto \mathbb{R}$, Dom $a=\mathbb{N}$ is called a sequence. We write a_{n} instead of $a(n)$. The whole function is denoted by $\left\{a_{n}\right\}_{n=1}^{\infty}$.

A function $a: \mathbb{N} \mapsto \mathbb{R}$, Dom $a=\mathbb{N}$ is called a sequence. We write a_{n} instead of $a(n)$. The whole function is denoted by $\left\{a_{n}\right\}_{n=1}^{\infty}$. Several examples: $a_{n}=\frac{1}{n}, a_{n}=n, a_{n}=1$ and so on...

A function $a: \mathbb{N} \mapsto \mathbb{R}$, Dom $a=\mathbb{N}$ is called a sequence. We write a_{n} instead of $a(n)$. The whole function is denoted by $\left\{a_{n}\right\}_{n=1}^{\infty}$. Several examples: $a_{n}=\frac{1}{n}, a_{n}=n, a_{n}=1$ and so on... Two ways how to set a sequence:

- Explicit formula - relation for each term, for example

$$
a_{n}=3(n-1)+2 .
$$

- Implicit formula - the first term (or first few terms) is given and there is a relation how to compute a n-th term from the previous one. For example $a_{1}=1, a_{n+1}=(n+1) a_{n}$ or $b_{1}=b_{2}=1$ and $b_{n+2}=b_{n+1}+b_{n}$ (the famous Fibonacci sequence).

Example

■ Find an explicit formula for $a_{1}=1, a_{n+1}=a_{n}+2 n+1$ and verify your claim.

Boundedness - similarly to functions Monotonicity - similarly to functions

Boundedness - similarly to functions
Monotonicity - similarly to functions, anyway

Definition

We say that a_{n} is
■ increasing, if $a_{n}<a_{n+1}$ for all $n \in \mathbb{N}$,

- decreasing, if $a_{n}>a_{n+1}$ for all $n \in \mathbb{N}$,
- non-decreasing, if $a_{n} \leq a_{n+1}$ for all $n \in \mathbb{N}$,
- non-increasing, if $a_{n} \geq a_{n+1}$ for all $n \in \mathbb{N}$.

If $\left\{a_{n}\right\}_{n=1}^{\infty}$ posses one of these properties, we say it is monotone.

Examples

- $a_{n}=1-\frac{1}{n}$,
- $a_{n}=\frac{n^{2}}{2^{n}}$.

Definition

Let a_{n} be a sequence. A number $A \in \mathbb{R}$ is called a limit of a_{n} if

$$
\forall \varepsilon>0, \exists n_{0} \in \mathbb{N}, \forall n>n_{0},\left|a_{n}-A\right|<\varepsilon
$$

We write $\lim a_{n}=A$.

Definition

Let a_{n} be a sequence. A number $A \in \mathbb{R}$ is called a limit of a_{n} if

$$
\forall \varepsilon>0, \exists n_{0} \in \mathbb{N}, \forall n>n_{0},\left|a_{n}-A\right|<\varepsilon
$$

We write $\lim a_{n}=A$.
A limit of a_{n} is $+\infty$ if

$$
\forall M>0, \exists n_{0} \in \mathbb{N}, \forall n>n_{0}, a_{n}>M
$$

In that case we write $\lim a_{n}=+\infty$.
A limit of a_{n} is $-\infty$ if $\lim -a_{n}=+\infty$. We then write $\lim a_{n}=-\infty$.

Definition

Let a_{n} be a sequence. A number $A \in \mathbb{R}$ is called a limit of a_{n} if

$$
\forall \varepsilon>0, \exists n_{0} \in \mathbb{N}, \forall n>n_{0},\left|a_{n}-A\right|<\varepsilon
$$

We write $\lim a_{n}=A$.
A limit of a_{n} is $+\infty$ if

$$
\forall M>0, \exists n_{0} \in \mathbb{N}, \forall n>n_{0}, a_{n}>M
$$

In that case we write $\lim a_{n}=+\infty$.
A limit of a_{n} is $-\infty$ if $\lim -a_{n}=+\infty$. We then write $\lim a_{n}=-\infty$.

Examples

- $a_{n}=\frac{1}{n}$
- $a_{n}=n$

■ $a_{n}=q^{n}, q>1$.

Observation

Let a_{n} be a sequence and let $A \in \mathbb{R}^{*}$ be its limit. Then it is determined uniqely.

Observation

Let a_{n} be a sequence and let $A \in \mathbb{R}^{*}$ be its limit. Then it is determined uniqely.

Proof.

Assume, for simplicity, that there are two real numbers A and B such that $A \neq B$ and $\lim a_{n}=A$ and $\lim a_{n}=B$. Take $\varepsilon=\frac{1}{3}|A-B|$. There exists $n_{0} \in \mathbb{N}$ such that $\left|a_{n}-A\right|<\varepsilon$ and $\left|a_{n}-B\right|<\varepsilon$ for all $n>n_{0}$. Then, necessarily,

$$
|A-B|<\left|A-a_{n}\right|+\left|B-b_{n}\right|<\frac{2}{3} \varepsilon<\frac{2}{3}|A-B|
$$

which is a contradiction.

Lemma (Arithmetic of limits)

Let a_{n} and b_{n} be sequences and let $c \in \mathbb{R}$. Then

$$
\begin{aligned}
\lim \left(a_{n} \pm b_{n}\right) & =\lim a_{n} \pm \lim b_{n} \\
\lim \left(a_{n} b_{n}\right) & =\lim a_{n} \cdot \lim b_{n} \\
\lim c a_{n} & =c \lim a_{n} \\
\lim \frac{a_{n}}{b_{n}} & =\frac{\lim a_{n}}{\lim b_{n}}
\end{aligned}
$$

assuming the right hand side has meaning.

Lemma (Arithmetic of limits)

Let a_{n} and b_{n} be sequences and let $c \in \mathbb{R}$. Then

$$
\begin{aligned}
\lim \left(a_{n} \pm b_{n}\right) & =\lim a_{n} \pm \lim b_{n} \\
\lim \left(a_{n} b_{n}\right) & =\lim a_{n} \cdot \lim b_{n} \\
\lim c a_{n} & =c \lim a_{n} \\
\lim \frac{a_{n}}{b_{n}} & =\frac{\lim a_{n}}{\lim b_{n}}
\end{aligned}
$$

assuming the right hand side has meaning.
Recall indefinite terms

$$
\infty-\infty, \frac{\infty}{\infty}, 0 \cdot \infty, \frac{0}{0}, 1^{\infty}, \infty^{0}, 0^{0}
$$

which do not have any meaning. We also recall that $\frac{1}{\infty}=0$.

Proof.

We will assume (for simplicity) $\lim a_{n}=A \in \mathbb{R}$ and $\lim b_{n}=B \in \mathbb{R}$. Moreover, we consider only $\lim \left(a_{n}+b_{n}\right)=\lim a_{n}+\lim b_{n}$. Take $\varepsilon>0$ arbitrarily. Since $\lim a_{n}=A$ and $\lim b_{n}=B$ there exists $n_{0} \in \mathbb{N}$ such that $\left|a_{n}-A\right|<\frac{1}{2} \varepsilon$ and $\left|b_{n}-B\right|<\frac{1}{2} \varepsilon$. Consequently,

$$
\left|a_{n}+b_{n}-A-B\right| \leq\left|a_{n}-A\right|+\left|b_{n}-B\right|<\varepsilon
$$

and we have just verified that $A+B$ is a limit of $a_{n}+b_{n}$.

Examples

- $\lim q^{n}, q \in(0,1)$
- $\lim n^{2}-n$
- $\lim \frac{n+1}{n^{2}+3}$
- $\lim \frac{n^{3}+3 n^{2}}{3 n^{3}+n^{2}}$

Observation

Let a_{n} be a sequence with real (finite) limit A. Then a_{n} is a bounded sequence.

Observation

Let a_{n} be a sequence with real (finite) limit A. Then a_{n} is a bounded sequence.

Proof.

Indeed, take (for instance) $\varepsilon=1$. There exists $n_{0} \in \mathbb{N}$ such that $\left\{a_{n}\right\}_{n>n_{0}}$ is bounded from above by $A+1$ and from below by $A-1$. Next, $\left\{a_{1}, a_{2}, \ldots, a_{n_{0}}\right\}$ is a finite set and thus it is bounded from above (say by $M \in \mathbb{R}$) and from below by $m \in \mathbb{R}$. Then, $\left\{a_{n}\right\}_{n=1}^{\infty}$ is bounded from above by $\max \{M, A+1\}$ and from below by $\min \{m, A-1\}$.

Lemma (Sandwich lemma)

Let a_{n}, b_{n}, c_{n} be such that $a_{n} \leq b_{n} \leq c_{n}$ for all $n \in \mathbb{N}$. Assume, moreover, that $\lim a_{n}=\lim c_{n}=A \in \mathbb{R}^{*}$. Then $\lim b_{n}$ exists and $\lim b_{n}=A$.

Lemma (Sandwich lemma)

Let a_{n}, b_{n}, c_{n} be such that $a_{n} \leq b_{n} \leq c_{n}$ for all $n \in \mathbb{N}$. Assume, moreover, that $\lim a_{n}=\lim c_{n}=A \in \mathbb{R}^{*}$. Then $\lim b_{n}$ exists and $\lim b_{n}=A$.

Proof.

Take an arbitrary $\varepsilon>0$. There exists $n_{0} \in \mathbb{N}$ such that for all $n>n_{0}$ we have $\left|a_{n}-A\right|<\varepsilon$ and $\left|c_{n}-A\right|<\varepsilon$. There may appear one of the following cases:

- $A \geq c_{n}$. In that case, $\left|b_{n}-A\right|<\left|a_{n}-A\right|<\varepsilon$.
- $A \leq a_{n}$. In that case, $\left|b_{n}-A\right|<\left|c_{n}-A\right|<\varepsilon$.
- $A \in\left(a_{n}, c_{n}\right)$. In that case, since $b_{n} \in\left[a_{n}, c_{n}\right]$, we have

$$
\left|b_{n}-A\right|<\left|a_{n}-c_{n}\right|=\left|a_{n}-A+A-c_{n}\right| \leq\left|a_{n}-A\right|+\left|b_{n}-B\right|<2 \varepsilon
$$

No matter which one is true, we have $\left|b_{n}-A\right|<2 \varepsilon$ and A is a limit of b_{n} according to the definition of limit.

Examples

- $\lim \frac{\cos n}{n}$

■ $\lim \sqrt[n]{5^{n}+3^{n}+2}$ (Hint: $\lim \sqrt[n]{a}=1$ for every $a>0$.)

Definition

Let a_{n} be a sequence and let $k: \mathbb{N} \mapsto \mathbb{N}$ be an increasing sequence of natural numbers. Then $a_{k_{n}}$ is a subsequence.

Definition

Let a_{n} be a sequence and let $k: \mathbb{N} \mapsto \mathbb{N}$ be an increasing sequence of natural numbers. Then $a_{k_{n}}$ is a subsequence.

Observation

Let a_{n} be a sequence such that $\lim a_{n}=A, A \in \mathbb{R}^{*}$. Then every subsequence $a_{k_{n}}$ has a limit A.

Definition

Let a_{n} be a sequence and let $k: \mathbb{N} \mapsto \mathbb{N}$ be an increasing sequence of natural numbers. Then $a_{k_{n}}$ is a subsequence.

Observation

Let a_{n} be a sequence such that $\lim a_{n}=A, A \in \mathbb{R}^{*}$. Then every subsequence $a_{k_{n}}$ has a limit A.

Proof.

Once again, we assume for simplicity that $A \in \mathbb{R}$. For arbitrary $\varepsilon>0$ there exists n_{0} such that $\left|a_{n}-A\right|<\varepsilon$. However, as k_{n} is an increasing sequence of natural numbers, there exists $n_{1} \in \mathbb{N}$ such that $k_{n}>n_{0}$ whenever $n>n_{1}$. That means that for ever $n>n_{1}$ we have $\left|a_{k_{n}}-A\right|<\varepsilon$. The proof is complete.

Examples

- $\lim (-1)^{n}(n+1)$
- $\lim q^{n}, q<0$.
- $\lim \cos (\pi n) \frac{n-1}{n^{2}}$

Example

- $\lim \frac{n^{2}}{2^{n}}$

Example

- $\lim \frac{n^{2}}{2^{n}}$

Theorem (Heine)

Let $c \in \mathbb{R}^{*}$ and let $d \in \mathbb{R}^{*}$. Then $\lim _{x \rightarrow c} f(x)=d$ if and only if $\lim f\left(x_{n}\right)=d$ for every sequence x_{n} such that $\lim x_{n}=c$.

Example

- $\lim \frac{n^{2}}{2^{n}}$

Theorem (Heine)

Let $c \in \mathbb{R}^{*}$ and let $d \in \mathbb{R}^{*}$. Then $\lim _{x \rightarrow c} f(x)=d$ if and only if $\lim f\left(x_{n}\right)=d$ for every sequence x_{n} such that $\lim x_{n}=c$.

Example

■ $\lim \frac{6 n^{2}+(-1)^{n}}{(n+1)^{3}-n^{3}}$

Series

Can be the sum of infinitely many numbers finite?

Series

Can be the sum of infinitely many numbers finite?

Series

Can be the sum of infinitely many numbers finite?

Series

Can be the sum of infinitely many numbers finite?

On the other hand

$$
1+1+1+1+\ldots=\infty
$$

Series

Can be the sum of infinitely many numbers finite?

$$
\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\ldots<\infty
$$

On the other hand

$$
1+1+1+1+\ldots=\infty
$$

Definition

A series is a sum of infinitely many numbers.

Recall

$$
\begin{aligned}
(q+1)(q-1) & =q^{2}-1 \\
\left(q^{2}+q+1\right)(q-1) & =q^{3}-1 \\
\left(q^{n}+q^{n-1}+q^{n-2}+\ldots+q+1\right)(q-1) & =q^{n+1}-1 .
\end{aligned}
$$

for every $q \in \mathbb{R}$.

Recall

$$
\begin{aligned}
(q+1)(q-1) & =q^{2}-1 \\
\left(q^{2}+q+1\right)(q-1) & =q^{3}-1 \\
\left(q^{n}+q^{n-1}+q^{n-2}+\ldots+q+1\right)(q-1) & =q^{n+1}-1 .
\end{aligned}
$$

for every $q \in \mathbb{R}$.
Thus

$$
\sum_{i=0}^{\infty} q^{i}=\frac{1}{1-q}
$$

for every $q \in(-1,1)$.

Definition

Let $\left\{a_{i}\right\}_{i=0}^{\infty} \subset \mathbb{R}$ be a sequence. We define the $n-t h$ partial sum

$$
s_{n}=\sum_{i=0}^{n} a_{i} .
$$

If $\lim _{n \rightarrow \infty} s_{n}$ exists and is finite, than we say that $\sum_{i=0}^{\infty} a_{i}$ converges and its value is $\lim _{n \rightarrow \infty} s_{n}$. If a sum does not converge, we say that it diverges.

Definition

Let $\left\{a_{i}\right\}_{i=0}^{\infty} \subset \mathbb{R}$ be a sequence. We define the $n-t h$ partial sum

$$
s_{n}=\sum_{i=0}^{n} a_{i}
$$

If $\lim _{n \rightarrow \infty} s_{n}$ exists and is finite, than we say that $\sum_{i=0}^{\infty} a_{i}$ converges and its value is $\lim _{n \rightarrow \infty} s_{n}$. If a sum does not converge, we say that it diverges.

Examples

- What is the second, third and fourth partial sum of $\sum_{i=0}^{\infty}(-1)^{i}$. In general, what is its n-th partial sum? Does the sum converge?
- What is the second, third and fourth partial sum of
$\sum_{i=1}^{\infty}\left(\frac{1}{i}-\frac{1}{i+1}\right)$. In general, what is its $n-$ th partial sum? Does the sum converge?

Observation

Let $\sum_{i=0}^{\infty} a_{i}$ converges, then $\lim _{n \rightarrow \infty} a_{n}=0$.

Observation

Let $\sum_{i=0}^{\infty} a_{i}$ converges, then $\lim _{n \rightarrow \infty} a_{n}=0$.
Proof: It holds that

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} s_{n}-s_{n-1}=0
$$

where the last equality is true because of the arithmetic of limits.

Observation

Let $\sum_{i=0}^{\infty} a_{i}$ converges, then $\lim _{n \rightarrow \infty} a_{n}=0$.
Proof: It holds that

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} s_{n}-s_{n-1}=0
$$

where the last equality is true because of the arithmetic of limits. Examples

- $\sum_{n=0}^{\infty} 1=1+1+1+\ldots$ diverge.
- How about $\sum_{n=1}^{\infty} \frac{1}{n}$?

Series of positive numbers

During this part, we suppose $a_{n} \geq 0$ for every $n \in\{0,1,2,3 \ldots\}$.

Series of positive numbers

During this part, we suppose $a_{n} \geq 0$ for every $n \in\{0,1,2,3 \ldots\}$.

Theorem

Let $\left\{a_{n}\right\}_{n=0}^{\infty} \subset \mathbb{R}$ and $\left\{b_{n}\right\}_{n=0}^{\infty} \subset \mathbb{R}$ fulfill $a_{n} \leq b_{n}$ for every $n \in\{0,1,2,3, \ldots\}$. Then

- if $\sum_{n=0}^{\infty} b_{n}$ converges, then also $\sum_{n=0}^{\infty} a_{n}$ converges,
- if $\sum_{n=0}^{\infty} a_{n}$ diverges, then also $\sum_{n=0}^{\infty} b_{n}$ diverges.

Example

- $\sum_{n=1}^{\infty} \frac{2^{n}+n}{5^{n}}$
- $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$.

Scales:

■ It holds that

$$
\sum_{n=0}^{\infty} q^{n}
$$

converges for $q \in(0,1)$ and diverges for $q \geq 1$.
■ It holds that

$$
\sum_{n=1}^{\infty} \frac{1}{n^{p}}
$$

converges for $p>1$ and diverges for $p \leq 1$.

Limit version of the criterion

Theorem

Let $\left\{a_{n}\right\}_{n=0}^{\infty} \subset \mathbb{R}$ and $\left\{b_{n}\right\}_{n=0}^{\infty} \subset \mathbb{R}$ fulfill
■ $\lim \frac{a_{n}}{b_{n}} \in(0, \infty)$, then $\sum_{n=0}^{\infty} a_{n}$ converge if and only if $\sum_{n=0}^{\infty} b_{n}$ converge,
■ $\lim \frac{a_{n}}{b_{n}}=0$, then if $\sum_{n=0}^{\infty} b_{n}$ converge then also $\sum_{n=0}^{\infty} a_{n}$ converge,
$■ \lim \frac{a_{n}}{b_{n}}=\infty$, then if $\sum_{n=0}^{\infty} a_{n}$ converge, then also $\sum_{n=0}^{\infty} b_{n}$ converge.

Examples

- Decide about the convergence of $\sum_{n=1}^{\infty} \frac{n^{2}+3 n}{\left(n^{3}+1\right)^{3 / 2}}$.
- Decide about the convergence of $\sum_{n=1}^{\infty} \sin ^{2}\left(\frac{1}{n}\right)$.

Reminder

Examples

■ Let the sequence $\sum_{n=1}^{\infty} a_{n}$ has partial sums of the form

$$
s_{n}=\frac{5+8 n^{2}}{2-7 n^{2}}
$$

Decide about the convergence of the series.

Reminder

Examples

- Let the sequence $\sum_{n=1}^{\infty} a_{n}$ has partial sums of the form

$$
s_{n}=\frac{5+8 n^{2}}{2-7 n^{2}}
$$

Decide about the convergence of the series.

- Decide about the convergence of the following series

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{6+8 n+9 n^{2}}{3+2 n+n^{2}}, \quad \sum_{n=0}^{\infty} 3^{2+n} 2^{1-3 n}, \quad \sum_{n=1}^{\infty} \frac{(-6)^{n}}{8^{2-n}} \\
& \sum_{n=5}^{\infty} \frac{3 n e^{n}}{n^{2}+1}, \quad \sum_{n=4}^{\infty} \frac{10}{n^{2}-4 n+3}, \quad \sum_{n=1}^{\infty} \frac{n-1}{\sqrt{n^{6}+1}}
\end{aligned}
$$

Observation (The d'Alambert criterion - ration test)

Let $\left\{a_{n}\right\}_{n=0}^{\infty} \subset \mathbb{R}$ be a sequence of positive real numbers. Then

- if $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}<1$ then $\sum_{n=0}^{\infty} a_{n}$ converges,

■ if $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}>1$ then $\sum_{n=0}^{\infty} a_{n}$ diverges.

Observation (The d'Alambert criterion - ration test)

Let $\left\{a_{n}\right\}_{n=0}^{\infty} \subset \mathbb{R}$ be a sequence of positive real numbers. Then

- if $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}<1$ then $\sum_{n=0}^{\infty} a_{n}$ converges,

■ if $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}>1$ then $\sum_{n=0}^{\infty} a_{n}$ diverges.

Example

- Examine the convergence of

$$
\sum_{n=0}^{\infty} \frac{(n!)^{2}}{(2 n)!}
$$

Observation (The Cauchy criterion - root test)

Let $\left\{a_{n}\right\}_{n=0}^{\infty} \subset \mathbb{R}$ be a sequence of positive real numbers. Then

- if $\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}<1$ then $\sum_{n=0}^{\infty} a_{n}$ converges,

■ if $\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}>1$ then $\sum_{n=0}^{\infty} a_{n}$ diverges.

Observation (The Cauchy criterion - root test)

Let $\left\{a_{n}\right\}_{n=0}^{\infty} \subset \mathbb{R}$ be a sequence of positive real numbers. Then

- if $\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}<1$ then $\sum_{n=0}^{\infty} a_{n}$ converges,
- if $\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}>1$ then $\sum_{n=0}^{\infty} a_{n}$ diverges.
- Examine

$$
\sum_{n=1}^{\infty}\left(\frac{n-1}{n+1}\right)^{n(n-1)}
$$

series, reminder:

series, reminder:

- Rarely, one can tell the exact value of a series $\left(\sum_{n=0}^{\infty} q^{n}=\frac{1}{1-q}\right.$ for $q \in(-1,1))$
- Rather than that, we focus on finiteness of a series - convergence vs divergence.
- Necessary condition for convergence: If $\sum_{n=1}^{\infty} a_{n}$ converges then $\lim a_{n}=0$.
- Are all summands non-negative (non-positive)?
- Yes, then we may use: comparison, the ration test, the root test.
- No, then we will see today.

series, reminder:

- Rarely, one can tell the exact value of a series $\left(\sum_{n=0}^{\infty} q^{n}=\frac{1}{1-q}\right.$ for $q \in(-1,1))$
- Rather than that, we focus on finiteness of a series - convergence vs divergence.
- Necessary condition for convergence: If $\sum_{n=1}^{\infty} a_{n}$ converges then $\lim a_{n}=0$.
- Are all summands non-negative (non-positive)?

■ Yes, then we may use: comparison, the ration test, the root test.

- No, then we will see today.

Exercises:

- Does $\sum_{n=1}^{\infty} \frac{3^{1-2 n}}{n^{2}+1}$ converge or diverge?

■ Does $\sum_{n=1}^{\infty} \frac{3}{n^{2}+7 n+12}$ converge or diverge?

Definition

Let

$$
\sum_{n=0}^{\infty}\left|a_{n}\right|
$$

converges. Then we say that $\sum_{n=0}^{\infty} a_{n}$ is absolutely convergent (or converges absolutely)

Definition

Let

$$
\sum_{n=0}^{\infty}\left|a_{n}\right|
$$

converges. Then we say that $\sum_{n=0}^{\infty} a_{n}$ is absolutely convergent (or converges absolutely)

Observation

Let $\sum_{n=0}^{\infty} a_{n}$ converge absolutely. Then it converges.

Definition

Let

$$
\sum_{n=0}^{\infty}\left|a_{n}\right|
$$

converges. Then we say that $\sum_{n=0}^{\infty} a_{n}$ is absolutely convergent (or converges absolutely)

Observation

Let $\sum_{n=0}^{\infty} a_{n}$ converge absolutely. Then it converges.

Example

$■$ Examine $\sum_{n=1}^{\infty} \frac{\sin n}{n^{2}}$.

Theorem (The Leibnitz criterion)

Let $\left\{a_{n}\right\}_{n=0}^{\infty} \subset \mathbb{R}$ be a sequence of positive numbers such that

- $\lim _{n \rightarrow 0} a_{n}=0$.
- a_{n} is a monotone sequence.

Then,

$$
\sum_{n=0}^{\infty}(-1)^{n} a_{n}
$$

converges.

Theorem (The Leibnitz criterion)

Let $\left\{a_{n}\right\}_{n=0}^{\infty} \subset \mathbb{R}$ be a sequence of positive numbers such that

- $\lim _{n \rightarrow 0} a_{n}=0$.
- a_{n} is a monotone sequence.

Then,

$$
\sum_{n=0}^{\infty}(-1)^{n} a_{n}
$$

converges.

Example

- Examine $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{7+2 n}$.
- Examine $\sum_{n=1}^{\infty} \frac{(-1)^{n}\left(1+(-1)^{n}\right)}{n}$.

Gordon's growth model: Shares bought at a time $t=0$ for P_{0} give us at time $t=1$ the following return r

$$
r=\frac{\operatorname{Div}_{1}+P_{1}-P_{0}}{P_{0}}
$$

where $D i v_{1}$ is the dividend paid during the first year. We deduce

$$
P_{0}=\frac{\operatorname{Div}_{1}}{1+r}+\frac{P_{1}}{1+r}
$$

Gordon's growth model: Shares bought at a time $t=0$ for P_{0} give us at time $t=1$ the following return r

$$
r=\frac{D i v_{1}+P_{1}-P_{0}}{P_{0}}
$$

where $D i v_{1}$ is the dividend paid during the first year. We deduce

$$
P_{0}=\frac{\operatorname{Div}_{1}}{1+r}+\frac{P_{1}}{1+r} .
$$

Consequently

$$
P_{0}=\sum_{t=1}^{\infty} \frac{\text { Div }_{t}}{(1+r)^{t}}
$$

We assume constant growth of the dividends, in particular we assume Div_{1} given and $\operatorname{Div}_{t}=(1+g) \cdot \operatorname{Div}_{t-1}$.

Gordon's growth model: Shares bought at a time $t=0$ for P_{0} give us at time $t=1$ the following return r

$$
r=\frac{\operatorname{Div}_{1}+P_{1}-P_{0}}{P_{0}}
$$

where $D i v_{1}$ is the dividend paid during the first year. We deduce

$$
P_{0}=\frac{\operatorname{Div}_{1}}{1+r}+\frac{P_{1}}{1+r} .
$$

Consequently

$$
P_{0}=\sum_{t=1}^{\infty} \frac{\text { Div }_{t}}{(1+r)^{t}}
$$

We assume constant growth of the dividends, in particular we assume Div_{1} given and $\operatorname{Div}_{t}=(1+g) \cdot \operatorname{Div}_{t-1}$. Consequently

$$
P_{0}=\frac{\operatorname{Div}_{1}}{(r-g)}
$$

It holds that

$$
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
$$

