1. Solve

$$
\begin{array}{r}
x+y+z+t=4 \\
2 x+z=5 \\
-z+3 t=8 \\
x-y-z+2 t=7 .
\end{array}
$$

2. Consider an equation

$$
x^{3}+y^{3}-3 x y-3=0 .
$$

(a) Does there exist a function $y(x)$ given by the equation on some neighborhood of a point $(1,2)$? Carefully verify all needed assumptions.
(b) Compute $y^{\prime}(1)$ for the function from the previous step.
(c) Write an equation of the tangent line to the graph of the function y at the point $(1,2)$.
3. Consider an equation

$$
x^{\prime \prime}+4 x^{\prime}+3 x=0
$$

(a) Rewrite this second order equation as a first-order linear system (hint, use $x^{\prime}=y$).
(b) Solve the linear system.
(c) Find a solution fulfilling the initial condition $x^{\prime}(0)=1, x(0)=1$.
4. Consider a vector field

$$
F(x, y)=\left(2 x^{3} y^{4}+x, 2 x^{4} y^{3}+y\right)
$$

(a) Write a definition of a potential of a vector field.
(b) Verify whether the given field F has potential or not.
(c) If F has potential, find it.

