1. Compute

$$
\int x^{5} \sin \left(x^{3}\right) \mathrm{d} x
$$

Points:
2. Compute

$$
\int \frac{x+2}{(x-2)\left(x^{2}+4\right)} \mathrm{d} x .
$$

Points:

3. Evaluate

$$
\int_{0}^{2} x^{2} \sqrt{8-x^{3}} \mathrm{~d} x
$$

Points:
4. Write down the horizontal and vertical cross-section of the triangle M which has vertices $(-1,-1),(0,3)$ and $(-1,4)$.
5. Compute

$$
\int x \mathrm{~d} x \mathrm{~d} y
$$

over the set

$$
M=\left\{(x, y) \in \mathbb{R}^{2}, 1-x^{2} \leq y \leq 3-3 x^{2}\right\} .
$$

1. Compute

$$
\int x \log ^{4} x \mathrm{~d} x
$$

Points:
2. Compute

$$
\int \frac{x^{3}}{\left(x^{2}-4\right)} \mathrm{d} x .
$$

3. Evaluate

$$
\int_{0}^{\pi / 2} \sin x\left(\cos ^{3} x+\cos x+1\right) \mathrm{d} x .
$$

4. Change the order of integration of

$$
\int_{0}^{1}\left(\int_{-2 x^{2}}^{-x^{2}} f(x, y) \mathrm{d} y\right) \mathrm{d} x
$$

5. Compute

$$
\int_{M} y \mathrm{~d} x \mathrm{~d} y
$$

where M is the triangle with vertices $(-2,0),(-2,6)$ and $(1,3)$.

