1. Decide, whether the vectors $u=(3,-1,-1,0), v=(1,1,0,2)$ and $w=(0,-1,0,1)$ are linearly dependent or independent.
2. Find an intersection of the line p and the plane σ where p is given as

$$
p:\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)+t\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right), t \in \mathbb{R}
$$

and σ consists of all points fulfilling the equation

$$
x+2 y-z+3=0
$$

3. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given as

$$
f(x, y)=x^{2}(x+\sin y)
$$

Find ∇f.
4. Find all local maxima and minima of

$$
f(x, y)=x^{3}-3 x y+3 y^{2}
$$

5. Compute

$$
\int_{M} x y^{2} \mathrm{~d} x \mathrm{~d} y
$$

where $M=\left\{(x, y) \in \mathbb{R}^{2}, x^{2} \leq y \leq x, x \in[0,1]\right\}$.
6. Find all solutions to a system

$$
\mathbf{x}^{\prime}=\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right) \mathbf{x}
$$

