Sequences and Series

Václav Mácha
University of Chemistry and Technology

Sequences

Example

■ A firm has purchased an item on a fixed payment plan of \$ 20000 per year for 8 years. Payments are to be made at the beginning of each year. What is the present value of the total cash flow of payments for an interest rate of 20% per year?

Sequences

Example

- A firm has purchased an item on a fixed payment plan of $\$ 20000$ per year for 8 years. Payments are to be made at the beginning of each year. What is the present value of the total cash flow of payments for an interest rate of 20% per year?
■ What if the firm from the previous exercise has to pay $\$ 20000$ yearly for ever?

Definition

A function $a: \mathbb{N} \rightarrow \mathbb{R}$, Dom $a=\mathbb{N}$ is called a sequence. We write a_{n} instead of $a(n)$. The whole function is denoted by $\left\{a_{n}\right\}_{n=1}^{\infty}$.

Examples

- Write the first five elements of $a_{n}=\frac{1}{n}$. What is its fiftieth element?
- Write the first five elements of $a_{n}=3(n-1)+2$. Write its twentieth element.
■ Write the first five elements of $a_{n+1}=2 a_{n}+1, a_{1}=1$. Is it possible to write directly its thirtieth element? Try to deduce its explicit formula and prove it is correct.
- Write the first six elements of $a_{n+2}=a_{n+1}+a_{n}, a_{1}=a_{0}=1$.

Definition

We say that a_{n} is
■ increasing, if $a_{n}<a_{n+1}$ for all $n \in \mathbb{N}$,

- decreasing, if $a_{n}>a_{n+1}$ for all $n \in \mathbb{N}$,
- non-decreasing, if $a_{n} \leq a_{n+1}$ for all $n \in \mathbb{N}$,
- non-increasing, if $a_{n} \geq a_{n+1}$ for all $n \in \mathbb{N}$.

If $\left\{a_{n}\right\}_{n=1}^{\infty}$ posses one of these properties, we say it is monotone.
Exercises: Decide about the monotonicity of

- $a_{n}=\frac{n-1}{n}$
- $a_{n}=\frac{\sqrt{n}}{n+1}$
- $a_{n}=\sqrt{n+4}-\sqrt{n}$

Boundedness is similarl to functions, i.e.,

Definition

The sequence $\left\{a_{n}\right\}$ is bounded from above if there is $M \in \mathbb{R}$ such that $a_{n} \leq M$ for every $n \in \mathbb{N}$. Similarly, it is bounded from below if there is $m \in \mathbb{R}$ such that $a_{n} \geq m$ for every $n \in \mathbb{N}$.

Exercises:

Decide about the boundedness of the sequences from the previous slide, i.e.,

- $a_{n}=\frac{n-1}{n}$
- $a_{n}=\frac{\sqrt{n}}{n+1}$
- $a_{n}=\sqrt{n+4}-\sqrt{n}$

Limits, reminder

Definition

Let a_{n} be a sequence. A number $A \in \mathbb{R}$ is called a limit of a_{n} if

$$
\forall \varepsilon>0, \exists n_{0} \in \mathbb{N}, \forall n>n_{0},\left|a_{n}-A\right|<\varepsilon
$$

We write $\lim a_{n}=A$.
A limit of a_{n} is $+\infty$ if

$$
\forall M>0, \exists n_{0} \in \mathbb{N}, \forall n>n_{0}, a_{n}>M
$$

In that case we write $\lim a_{n}=+\infty$.
A limit of a_{n} is $-\infty$ if $\lim -a_{n}=+\infty$. We then write $\lim a_{n}=-\infty$.

Limits, reminder

Definition

Let a_{n} be a sequence. A number $A \in \mathbb{R}$ is called a limit of a_{n} if

$$
\forall \varepsilon>0, \exists n_{0} \in \mathbb{N}, \forall n>n_{0},\left|a_{n}-A\right|<\varepsilon
$$

We write $\lim a_{n}=A$.
A limit of a_{n} is $+\infty$ if

$$
\forall M>0, \exists n_{0} \in \mathbb{N}, \forall n>n_{0}, a_{n}>M
$$

In that case we write $\lim a_{n}=+\infty$.
A limit of a_{n} is $-\infty$ if $\lim -a_{n}=+\infty$. We then write $\lim a_{n}=-\infty$.
Uniqueness, arithmetics of limits, and sandwich lemma work similarly to the limits of functions.

Exercises:

Compute

- $\lim \frac{n+1}{n^{2}+3}$
- $\lim \frac{n^{3}+3 n^{2}}{3 n^{3}+n^{2}}$

Definition

Let a_{n} be a sequence and let $k: \mathbb{N} \mapsto \mathbb{N}$ be an increasing sequence of natural numbers. Then $a_{k_{n}}$ is a subsequence.

Lemma

Let a_{n} be a sequence such that $\lim a_{n}=A, A \in \mathbb{R}^{*}$. Then every subsequence $a_{k_{n}}$ has a limit A.

Exercises:

Compute

- $\lim \frac{(-1)^{n} n^{2}+2}{n^{2}}$
- $\lim \frac{1}{n} \sin n$
- $\lim \sqrt[n]{5^{n}+3^{n}+2^{n}}$

On relation with limits of function

Theorem (Heine)

Let x_{0} be a limit point of $\operatorname{Dom} f$. Then $\lim _{x \rightarrow x_{0}} f(x)=A$ if and only if it holds that $\lim f\left(x_{n}\right)=A$ for every x_{n} such that $\lim x_{n}=x$

Exercises:

Compute

- $\lim \left(1+\frac{1}{2 n}\right)^{n-4}$.
- $\lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right)$.
- $\lim \frac{n^{2}}{a^{n}}, a>1$.

Series

Back to the initial example:

- A firm has purchased an item on a fixed payment plan of $\$ 20000$ per year for 8 years. Payments are to be made at the beginning of each year. What is the present value of the total cash flow of payments for an interest rate of 20% per year?
■ What if the firm from the previous exercise has to pay $\$ 20000$ yearly for ever?

Series

Back to the initial example:

- A firm has purchased an item on a fixed payment plan of $\$ 20000$ per year for 8 years. Payments are to be made at the beginning of each year. What is the present value of the total cash flow of payments for an interest rate of 20% per year?
- What if the firm from the previous exercise has to pay $\$ 20000$ yearly for ever?
- Imagine you face the decision whether you by your own apartment or you rent it. Either, you may pay 8000000 CZK for a one-bedroom apartment or you can rent it for 20000 CZK per month (lets simplify it to 240000 CZK per year) paid for ever. Assuming the interest rate is 4% per year which of these choices has less present value? What if the interest rate drops to 2% ?

Can be the sum of infinitely many numbers finite?

Can be the sum of infinitely many numbers finite?

Can be the sum of infinitely many numbers finite?

Can be the sum of infinitely many numbers finite?

$$
\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\ldots<\infty
$$

On the other hand

$$
1+1+1+1+\ldots=\infty
$$

Can be the sum of infinitely many numbers finite?

$$
\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\ldots<\infty
$$

On the other hand

$$
1+1+1+1+\ldots=\infty
$$

Definition

A series is a sum of infinitely many numbers.

Recall

$$
\begin{aligned}
(q+1)(q-1) & =q^{2}-1 \\
\left(q^{2}+q+1\right)(q-1) & =q^{3}-1 \\
\left(q^{n}+q^{n-1}+q^{n-2}+\ldots+q+1\right)(q-1) & =q^{n+1}-1 .
\end{aligned}
$$ for every $q \in \mathbb{R}$.

Recall

$$
\begin{aligned}
(q+1)(q-1) & =q^{2}-1 \\
\left(q^{2}+q+1\right)(q-1) & =q^{3}-1 \\
\left(q^{n}+q^{n-1}+q^{n-2}+\ldots+q+1\right)(q-1) & =q^{n+1}-1 .
\end{aligned}
$$

for every $q \in \mathbb{R}$.
Thus

$$
\sum_{i=0}^{\infty} q^{i}=\frac{1}{1-q}
$$

for every $q \in(-1,1)$.

Definition

Let $\left\{a_{i}\right\}_{i=0}^{\infty} \subset \mathbb{R}$ be a sequence. We define the n-th partial sum

$$
s_{n}=\sum_{i=0}^{n} a_{i}
$$

If $\lim _{n \rightarrow \infty} s_{n}$ exists and is finite, than we say that $\sum_{i=0}^{\infty} a_{i}$ converges and its value is $\lim _{n \rightarrow \infty} s_{n}$. If a sum does not converge, we say that it diverges.

Definition

Let $\left\{a_{i}\right\}_{i=0}^{\infty} \subset \mathbb{R}$ be a sequence. We define the $n-t h$ partial sum

$$
s_{n}=\sum_{i=0}^{n} a_{i} .
$$

If $\lim _{n \rightarrow \infty} s_{n}$ exists and is finite, than we say that $\sum_{i=0}^{\infty} a_{i}$ converges and its value is $\lim _{n \rightarrow \infty} s_{n}$. If a sum does not converge, we say that it diverges.

Examples

- What is the second, third and fourth partial sum of $\sum_{i=0}^{\infty}(-1)^{i}$. In general, what is its n-th partial sum? Does the sum converge?
- What is the second, third and fourth partial sum of $\sum_{i=1}^{\infty}\left(\frac{1}{i}-\frac{1}{i+1}\right)$. In general, what is its n-th partial sum? Does the sum converge?

Observation
 Let $\sum_{i=0}^{\infty} a_{i}$ converges, then $\lim _{n \rightarrow \infty} a_{n}=0$.

Observation

Let $\sum_{i=0}^{\infty} a_{i}$ converges, then $\lim _{n \rightarrow \infty} a_{n}=0$.
Proof: It holds that

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} s_{n}-s_{n-1}=0
$$

where the last equality is true because of the arithmetic of limits.

Observation

Let $\sum_{i=0}^{\infty} a_{i}$ converges, then $\lim _{n \rightarrow \infty} a_{n}=0$.
Proof: It holds that

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} s_{n}-s_{n-1}=0
$$

where the last equality is true because of the arithmetic of limits.

Examples

- $\sum_{n=0}^{\infty} 1=1+1+1+\ldots$ diverge.
- How about $\sum_{n=1}^{\infty} \frac{1}{n}$?

Series of positive numbers

During this part, we suppose $a_{n} \geq 0$ for every $n \in\{0,1,2,3 \ldots\}$.

Series of positive numbers

During this part, we suppose $a_{n} \geq 0$ for every $n \in\{0,1,2,3 \ldots\}$.

Theorem

Let $\left\{a_{n}\right\}_{n=0}^{\infty} \subset \mathbb{R}$ and $\left\{b_{n}\right\}_{n=0}^{\infty} \subset \mathbb{R}$ fulfill $a_{n} \leq b_{n}$ for every $n \in\{0,1,2,3, \ldots\}$. Then

- if $\sum_{n=0}^{\infty} b_{n}$ converges, then also $\sum_{n=0}^{\infty} a_{n}$ converges,
- if $\sum_{n=0}^{\infty} a_{n}$ diverges, then also $\sum_{n=0}^{\infty} b_{n}$ diverges.

Example

- $\sum_{n=1}^{\infty} \frac{2^{n}+n}{5^{n}}$
- $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$.

Scales:

■ It holds that

$$
\sum_{n=0}^{\infty} q^{n}
$$

converges for $q \in(0,1)$ and diverges for $q \geq 1$.

- It holds that

$$
\sum_{n=1}^{\infty} \frac{1}{n^{p}}
$$

converges for $p>1$ and diverges for $p \leq 1$.

Limit version of the criterion

Theorem

Let $\left\{a_{n}\right\}_{n=0}^{\infty} \subset \mathbb{R}$ and $\left\{b_{n}\right\}_{n=0}^{\infty} \subset \mathbb{R}$ fulfill
$\square \lim \frac{a_{n}}{b_{n}} \in(0, \infty)$, then $\sum_{n=0}^{\infty} a_{n}$ converge if and only if $\sum_{n=0}^{\infty} b_{n}$ converge,
■ $\lim \frac{a_{n}}{b_{n}}=0$, then if $\sum_{n=0}^{\infty} b_{n}$ converge then also $\sum_{n=0}^{\infty} a_{n}$ converge,
■ $\lim \frac{a_{n}}{b_{n}}=\infty$, then if $\sum_{n=0}^{\infty} a_{n}$ converge, then also $\sum_{n=0}^{\infty} b_{n}$ converge.

Examples

- Decide about the convergence of $\sum_{n=1}^{\infty} \frac{n^{2}+3 n}{\left(n^{3}+1\right)^{3 / 2}}$.

■ Decide about the convergence of $\sum_{n=1}^{\infty} \sin ^{2}\left(\frac{1}{n}\right)$.

Reminder

Examples

■ Let the sequence $\sum_{n=1}^{\infty} a_{n}$ has partial sums of the form

$$
s_{n}=\frac{5+8 n^{2}}{2-7 n^{2}}
$$

Decide about the convergence of the series.

Reminder

Examples

■ Let the sequence $\sum_{n=1}^{\infty} a_{n}$ has partial sums of the form

$$
s_{n}=\frac{5+8 n^{2}}{2-7 n^{2}}
$$

Decide about the convergence of the series.

- Decide about the convergence of the following series

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{6+8 n+9 n^{2}}{3+2 n+n^{2}}, \quad \sum_{n=0}^{\infty} 3^{2+n} 2^{1-3 n}, \quad \sum_{n=1}^{\infty} \frac{(-6)^{n}}{8^{2-n}} \\
& \sum_{n=5}^{\infty} \frac{3 n e^{n}}{n^{2}+1}, \quad \sum_{n=4}^{\infty} \frac{10}{n^{2}-4 n+3}, \quad \sum_{n=1}^{\infty} \frac{n-1}{\sqrt{n^{6}+1}}
\end{aligned}
$$

Observation (The d'Alambert criterion - ration test)

Let $\left\{a_{n}\right\}_{n=0}^{\infty} \subset \mathbb{R}$ be a sequence of positive real numbers. Then

- if $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}<1$ then $\sum_{n=0}^{\infty} a_{n}$ converges,
- if $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}>1$ then $\sum_{n=0}^{\infty} a_{n}$ diverges.

Observation (The d'Alambert criterion - ration test)

Let $\left\{a_{n}\right\}_{n=0}^{\infty} \subset \mathbb{R}$ be a sequence of positive real numbers. Then

- if $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}<1$ then $\sum_{n=0}^{\infty} a_{n}$ converges,
- if $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}>1$ then $\sum_{n=0}^{\infty} a_{n}$ diverges.

Example

■ Examine the convergence of

$$
\sum_{n=0}^{\infty} \frac{(n!)^{2}}{(2 n)!}
$$

Observation (The Cauchy criterion - root test)

Let $\left\{a_{n}\right\}_{n=0}^{\infty} \subset \mathbb{R}$ be a sequence of positive real numbers. Then

- if $\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}<1$ then $\sum_{n=0}^{\infty} a_{n}$ converges,
- if $\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}>1$ then $\sum_{n=0}^{\infty} a_{n}$ diverges.

Observation (The Cauchy criterion - root test)

Let $\left\{a_{n}\right\}_{n=0}^{\infty} \subset \mathbb{R}$ be a sequence of positive real numbers. Then

- if $\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}<1$ then $\sum_{n=0}^{\infty} a_{n}$ converges,
- if $\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}>1$ then $\sum_{n=0}^{\infty} a_{n}$ diverges.
- Examine

$$
\sum_{n=1}^{\infty}\left(\frac{n-1}{n+1}\right)^{n(n-1)}
$$

series, reminder:

series, reminder:

- Rarely, one can tell the exact value of a series $\left(\sum_{n=0}^{\infty} q^{n}=\frac{1}{1-q}\right.$ for $q \in(-1,1))$
- Rather than that, we focus on finiteness of a series - convergence vs divergence.
■ Necessary condition for convergence: If $\sum_{n=1}^{\infty} a_{n}$ converges then $\lim a_{n}=0$.
- Are all summands non-negative (non-positive)?
- Yes, then we may use: comparison, the ration test, the root test.
- No, then we will see today.

series, reminder:

- Rarely, one can tell the exact value of a series $\left(\sum_{n=0}^{\infty} q^{n}=\frac{1}{1-q}\right.$ for $q \in(-1,1))$
- Rather than that, we focus on finiteness of a series - convergence vs divergence.
■ Necessary condition for convergence: If $\sum_{n=1}^{\infty} a_{n}$ converges then $\lim a_{n}=0$.
- Are all summands non-negative (non-positive)?
- Yes, then we may use: comparison, the ration test, the root test.
- No, then we will see today.

Exercises:

- Does $\sum_{n=1}^{\infty} \frac{3^{1-2 n}}{n^{2}+1}$ converge or diverge?

■ Does $\sum_{n=1}^{\infty} \frac{3}{n^{2}+7 n+12}$ converge or diverge?

- Does $\sum_{n=1}^{\infty} \frac{5^{n}}{3^{n+1} 4^{2 n-1}}-\frac{\sqrt{n}-\sqrt{n-1}}{n}$ converge or diverge?

Definition

Let

$$
\sum_{n=0}^{\infty}\left|a_{n}\right|
$$

converges. Then we say that $\sum_{n=0}^{\infty} a_{n}$ is absolutely convergent (or converges absolutely)

Definition

Let

$$
\sum_{n=0}^{\infty}\left|a_{n}\right|
$$

converges. Then we say that $\sum_{n=0}^{\infty} a_{n}$ is absolutely convergent (or converges absolutely)

Observation

Let $\sum_{n=0}^{\infty} a_{n}$ converge absolutely. Then it converges.

Definition

Let

$$
\sum_{n=0}^{\infty}\left|a_{n}\right|
$$

converges. Then we say that $\sum_{n=0}^{\infty} a_{n}$ is absolutely convergent (or converges absolutely)

Observation

Let $\sum_{n=0}^{\infty} a_{n}$ converge absolutely. Then it converges.

Example

- Examine $\sum_{n=1}^{\infty} \frac{\sin n}{n^{2}}$.

Theorem (The Leibnitz criterion)
Let $\left\{a_{n}\right\}_{n=0}^{\infty} \subset \mathbb{R}$ be a sequence of positive numbers such that

- $\lim _{n \rightarrow 0} a_{n}=0$.
- a_{n} is a monotone sequence.

Then,

$$
\sum_{n=0}^{\infty}(-1)^{n} a_{n}
$$

converges.

Theorem (The Leibnitz criterion)

Let $\left\{a_{n}\right\}_{n=0}^{\infty} \subset \mathbb{R}$ be a sequence of positive numbers such that

- $\lim _{n \rightarrow 0} a_{n}=0$.
- a_{n} is a monotone sequence.

Then,

$$
\sum_{n=0}^{\infty}(-1)^{n} a_{n}
$$

converges.

Example

- Examine $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{7+2 n}$.
- Examine $\sum_{n=1}^{\infty} \frac{(-1)^{n}\left(1+(-1)^{n}\right)}{n}$.

Gordon's growth model: Shares bought at a time $t=0$ for P_{0} give us at time $t=1$ the following return r

$$
r=\frac{D i v_{1}+P_{1}-P_{0}}{P_{0}}
$$

where Div_{1} is the dividend paid during the first year. We deduce

$$
P_{0}=\frac{\operatorname{Div}_{1}}{1+r}+\frac{P_{1}}{1+r}
$$

Gordon's growth model: Shares bought at a time $t=0$ for P_{0} give us at time $t=1$ the following return r

$$
r=\frac{\operatorname{Div}_{1}+P_{1}-P_{0}}{P_{0}}
$$

where Div_{1} is the dividend paid during the first year. We deduce

$$
P_{0}=\frac{\operatorname{Div}_{1}}{1+r}+\frac{P_{1}}{1+r} .
$$

Consequently

$$
P_{0}=\sum_{t=1}^{\infty} \frac{\text { Div }_{t}}{(1+r)^{t}}
$$

We assume constant growth of the dividends, in particular we assume Div ${ }_{1}$ given and $\operatorname{Div}_{t}=(1+g) \cdot \operatorname{Div}_{t-1}$.

Gordon's growth model: Shares bought at a time $t=0$ for P_{0} give us at time $t=1$ the following return r

$$
r=\frac{\operatorname{Div}_{1}+P_{1}-P_{0}}{P_{0}}
$$

where Div_{1} is the dividend paid during the first year. We deduce

$$
P_{0}=\frac{\operatorname{Div}_{1}}{1+r}+\frac{P_{1}}{1+r} .
$$

Consequently

$$
P_{0}=\sum_{t=1}^{\infty} \frac{\text { Div }_{t}}{(1+r)^{t}}
$$

We assume constant growth of the dividends, in particular we assume Div given and $\operatorname{Div}_{t}=(1+g) \cdot \operatorname{Div}_{t-1}$.Consequently

$$
P_{0}=\frac{D i v_{1}}{(r-g)}
$$

It holds that

$$
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
$$

