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Sequences, intro

Sequences
Example

A firm has purchased an item on a fixed payment plan of $ 20 000
per year for 8 years. Payments are to be made at the beginning of
each year. What is the present value of the total cash flow of
payments for an interest rate of 20% per year?

What if the firm from the previous exercise has to pay $ 20 000 yearly
for ever?
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Sequences, intro

Definition

A function a : N → R, Dom a = N is called a sequence. We write an
instead of a(n). The whole function is denoted by {an}∞n=1.

Examples

Write the first five elements of an = 1
n . What is its fiftieth element?

Write the first five elements of an = 3(n − 1) + 2. Write its twentieth
element.

Write the first five elements of an+1 = 2an + 1, a1 = 1. Is it possible
to write directly its thirtieth element? Try to deduce its explicit
formula and prove it is correct.

Write the first six elements of an+2 = an+1 + an, a1 = a0 = 1.
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Sequences, intro

Definition

We say that an is

increasing, if an < an+1 for all n ∈ N,
decreasing, if an > an+1 for all n ∈ N,
non-decreasing, if an ≤ an+1 for all n ∈ N,
non-increasing, if an ≥ an+1 for all n ∈ N.

If {an}∞n=1 posses one of these properties, we say it is monotone.

Exercises: Decide about the monotonicity of

an = n−1
n

an =
√
n

n+1

an =
√
n + 4−

√
n

Václav Mácha (UCT) Sequences & Series 4 / 25



Sequences, intro

Boundedness is similarl to functions, i.e.,

Definition

The sequence {an} is bounded from above if there is M ∈ R such that
an ≤ M for every n ∈ N. Similarly, it is bounded from below if there is
m ∈ R such that an ≥ m for every n ∈ N.

Exercises:
Decide about the boundedness of the sequences from the previous slide,
i.e.,

an = n−1
n

an =
√
n

n+1

an =
√
n + 4−

√
n
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Sequences, intro Limits

Limits, reminder

Definition

Let an be a sequence. A number A ∈ R is called a limit of an if

∀ε > 0, ∃n0 ∈ N, ∀n > n0, |an − A| < ε.

We write lim an = A.
A limit of an is +∞ if

∀M > 0, ∃n0 ∈ N, ∀n > n0, an > M.

In that case we write lim an = +∞.
A limit of an is −∞ if lim−an = +∞. We then write lim an = −∞.

Uniqueness, arithmetics of limits, and sandwich lemma work similarly to
the limits of functions.
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Sequences, intro Limits

Exercises:
Compute

lim n+1
n2+3

lim n3+3n2

3n3+n2
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Sequences, intro Limits

Definition

Let an be a sequence and let k : N 7→ N be an increasing sequence of
natural numbers. Then akn is a subsequence.

Lemma

Let an be a sequence such that lim an = A, A ∈ R∗. Then every
subsequence akn has a limit A.

Exercises:
Compute

lim (−1)nn2+2
n2

lim 1
n sin n

lim n
√
5n + 3n + 2n
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Sequences, intro Limits

On relation with limits of function

Theorem (Heine)

Let x0 be a limit point of Domf . Then limx→x0 f (x) = A if and only if it
holds that lim f (xn) = A for every xn such that lim xn = x

Exercises:
Compute

lim
(
1 + 1

2n

)n−4
.

limx→0 sin
(
1
x

)
.

lim n2

an , a > 1.
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Series Introduction

Series
Back to the initial example:

A firm has purchased an item on a fixed payment plan of $ 20 000
per year for 8 years. Payments are to be made at the beginning of
each year. What is the present value of the total cash flow of
payments for an interest rate of 20% per year?

What if the firm from the previous exercise has to pay $ 20 000 yearly
for ever?

Imagine you face the decision whether you by your own apartment or
you rent it. Either, you may pay 8 000 000 CZK for a one-bedroom
apartment or you can rent it for 20 000 CZK per month (lets simplify
it to 240 000 CZK per year) paid for ever. Assuming the interest rate
is 4% per year which of these choices has less present value? What if
the interest rate drops to 2%?
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Series Introduction

Can be the sum of infinitely many numbers finite?

1
2

1
4

1
8

1

2
+

1

4
+

1

8
+

1

16
+ . . . < ∞

On the other hand
1 + 1 + 1 + 1 + . . . = ∞

Definition

A series is a sum of infinitely many numbers.
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Series Introduction

Recall

(q + 1)(q − 1) = q2 − 1

(q2 + q + 1)(q − 1) = q3 − 1(
qn + qn−1 + qn−2 + . . .+ q + 1

)
(q − 1) = qn+1 − 1.

for every q ∈ R.

Thus
∞∑
i=0

qi =
1

1− q
.

for every q ∈ (−1, 1).
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Series Introduction

Definition

Let {ai}∞i=0 ⊂ R be a sequence. We define the n−th partial sum

sn =
n∑

i=0

ai .

If limn→∞ sn exists and is finite, than we say that
∑∞

i=0 ai converges and
its value is limn→∞ sn. If a sum does not converge, we say that it diverges.

Examples

What is the second, third and fourth partial sum of
∑∞

i=0(−1)i . In
general, what is its n−th partial sum? Does the sum converge?

What is the second, third and fourth partial sum of
∑∞

i=1

(
1
i −

1
i+1

)
.

In general, what is its n−th partial sum? Does the sum converge?
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Series Introduction

Observation

Let
∑∞

i=0 ai converges, then limn→∞ an = 0.

Proof: It holds that

lim
n→∞

an = lim
n→∞

sn − sn−1 = 0

where the last equality is true because of the arithmetic of limits.
Examples∑∞

n=0 1 = 1 + 1 + 1 + . . . diverge.

How about
∑∞

n=1
1
n?
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Series Positive numbers

Series of positive numbers
During this part, we suppose an ≥ 0 for every n ∈ {0, 1, 2, 3 . . .}.

Theorem

Let {an}∞n=0 ⊂ R and {bn}∞n=0 ⊂ R fulfill an ≤ bn for every
n ∈ {0, 1, 2, 3, . . .}. Then

if
∑∞

n=0 bn converges, then also
∑∞

n=0 an converges,

if
∑∞

n=0 an diverges, then also
∑∞

n=0 bn diverges.

Example∑∞
n=1

2n+n
5n∑∞

n=1
1√
n
.
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Series Positive numbers

Scales:

It holds that
∞∑
n=0

qn

converges for q ∈ (0, 1) and diverges for q ≥ 1.

It holds that
∞∑
n=1

1

np

converges for p > 1 and diverges for p ≤ 1.
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Series Positive numbers

Limit version of the criterion

Theorem

Let {an}∞n=0 ⊂ R and {bn}∞n=0 ⊂ R fulfill

lim an
bn

∈ (0,∞), then
∑∞

n=0 an converge if and only if
∑∞

n=0 bn
converge,

lim an
bn

= 0, then if
∑∞

n=0 bn converge then also
∑∞

n=0 an converge,

lim an
bn

= ∞, then if
∑∞

n=0 an converge, then also
∑∞

n=0 bn converge.

Examples

Decide about the convergence of
∑∞

n=1
n2+3n

(n3+1)3/2
.

Decide about the convergence of
∑∞

n=1 sin
2
(
1
n

)
.
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Series Positive numbers

Reminder
Examples

Let the sequence
∑∞

n=1 an has partial sums of the form

sn =
5 + 8n2

2− 7n2
.

Decide about the convergence of the series.

Decide about the convergence of the following series

∞∑
n=1

6 + 8n + 9n2

3 + 2n + n2
,

∞∑
n=0

32+n21−3n,

∞∑
n=1

(−6)n

82−n
,

∞∑
n=5

3nen

n2 + 1
,

∞∑
n=4

10

n2 − 4n + 3
,

∞∑
n=1

n − 1√
n6 + 1

.
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Series Positive numbers

Observation (The d’Alambert criterion – ration test)

Let {an}∞n=0 ⊂ R be a sequence of positive real numbers. Then

if limn→∞
an+1

an
< 1 then

∑∞
n=0 an converges,

if limn→∞
an+1

an
> 1 then

∑∞
n=0 an diverges.

Example

Examine the convergence of

∞∑
n=0

(n!)2

(2n)!
.

Václav Mácha (UCT) Sequences & Series 19 / 25



Series Positive numbers

Observation (The d’Alambert criterion – ration test)

Let {an}∞n=0 ⊂ R be a sequence of positive real numbers. Then

if limn→∞
an+1

an
< 1 then

∑∞
n=0 an converges,

if limn→∞
an+1

an
> 1 then

∑∞
n=0 an diverges.

Example

Examine the convergence of

∞∑
n=0

(n!)2

(2n)!
.
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Series Positive numbers

Observation (The Cauchy criterion – root test)

Let {an}∞n=0 ⊂ R be a sequence of positive real numbers. Then

if limn→∞ n
√
an < 1 then

∑∞
n=0 an converges,

if limn→∞ n
√
an > 1 then

∑∞
n=0 an diverges.

Examine
∞∑
n=1

(
n − 1

n + 1

)n(n−1)

.
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Series Positive numbers
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Series Positive numbers

series, reminder:

Rarely, one can tell the exact value of a series (
∑∞

n=0 q
n = 1

1−q for
q ∈ (−1, 1))

Rather than that, we focus on finiteness of a series – convergence vs
divergence.

Necessary condition for convergence: If
∑∞

n=1 an converges then
lim an = 0.

Are all summands non-negative (non-positive)?

Yes, then we may use: comparison, the ration test, the root test.
No, then we will see today.

Exercises:

Does
∑∞

n=1
31−2n

n2+1
converge or diverge?

Does
∑∞

n=1
3

n2+7n+12
converge or diverge?

Does
∑∞

n=1
5n

3n+142n−1 −
√
n−

√
n−1

n converge or diverge?
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Series general terms

Definition

Let
∞∑
n=0

|an|

converges. Then we say that
∑∞

n=0 an is absolutely convergent (or
converges absolutely)

Observation

Let
∑∞

n=0 an converge absolutely. Then it converges.

Example

Examine
∑∞

n=1
sin n
n2

.
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Series general terms

Theorem (The Leibnitz criterion)

Let {an}∞n=0 ⊂ R be a sequence of positive numbers such that

limn→0 an = 0.

an is a monotone sequence.

Then,
∞∑
n=0

(−1)nan

converges.

Example

Examine
∑∞

n=1
(−1)n−1

7+2n .

Examine
∑∞

n=1
(−1)n(1+(−1)n)

n .
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Series about applications

Gordon’s growth model: Shares bought at a time t = 0 for P0 give us
at time t = 1 the following return r

r =
Div1 + P1 − P0

P0

where Div1 is the dividend paid during the first year. We deduce

P0 =
Div1
1 + r

+
P1

1 + r
.

Consequently

P0 =
∞∑
t=1

Divt
(1 + r)t

.

We assume constant growth of the dividends, in particular we assume Div1
given and Divt = (1 + g) · Divt−1.Consequently

P0 =
Div1

(r − g)
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Series Last one remark

It holds that

ex =
∞∑
n=0

xn

n!
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