Solutions to samples of the 3rd midterm test

Sample a:

1, The function is not given, one of the conditions is not fulfilled.
2 , Stationary points $(0,0)$ and $(3,-9)$. We cannot decide about the first one, there is no extreme in the second one.
3 , Minimum 6 is achieved in $(3,0)$, maximum $67 / 4$ is achieved at $\left(\pm \frac{\sqrt{35}}{2},-\frac{1}{2}\right)$.
$4,\left\{e^{t}\binom{3}{2}, e^{-2}\binom{0}{1}\right\}$.
$5,2 e^{t}\binom{3}{1}-e^{-t}\binom{1}{2}$.
Sample b:
1, Yes, it holds that $y^{\prime}(1)=1$.
2 , No extreme at the stationary points $(0,2),(-4,6)$ and $(1,3 / 2)$.
3,

$$
\begin{aligned}
& x^{\prime}=-3 / 2 x-3 y \\
& y^{\prime}=x
\end{aligned}
$$

$4, \frac{1}{3} e^{t}\binom{3}{1}-\frac{4}{3} e^{-2 t}\binom{0}{1}$
5 , Critical points are all points in the line $y=1$ and then a point $(0,0)$. The trajectories solves the system

$$
\frac{\partial y}{\partial x}=\frac{y}{x}
$$

(the sketch is not included, sorry for that).

Sample c:

1, Local minimum at $(2,-1)$
2, Maximum 1 is achieved at $(\pm 1,0)$, minimum -1 is achieved at $(0, \pm 1)$
3 ,

$$
\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{cc}
2 & -4 \\
-1 & -1
\end{array}\right)\binom{x}{y}+\binom{t^{2}+1}{\sin t}
$$

$4,\left\{e^{-t}\left(\begin{array}{c}0 \\ -1 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right),\left(\begin{array}{c}1 / 3 \\ 2 / 3 \\ 0\end{array}\right)+t\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)\right\}$
5 , The critical points are all points in the line $x=1$ and, moreover, the point $(0,0)$. The trajectories are the solutions to the system

$$
\frac{\partial y}{\partial x}=\frac{x}{y}
$$

(the sketch is not included, sorry for that).

